110 research outputs found

    Functional brain imaging with fMRI and MEG

    Get PDF
    The work described in this thesis was performed by the author, except where indicated. All the studies were accomplished on the 3 Tesla system within the Magnetic Resonance Centre at the University of Nottingham, and the Wellcome Trust MEG Laboratory at the Aston University during the period between October 1999 and June 2005. Functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG) are two promising brain function research modalities, sensitive to the hemodynamic and electrophysiological responses respectively during brain activites. The feasibility of joint employment of both modalities was examined in both spatial and temporal domains. A somatosensory tactile stimulus was adopted to induce simple functional reaction. It was shown that a reasonable spatial correspondence between fMRI and MEG can be established. Attempts were made on MEG recordings to extract suitable aspects for temporal features matching fMRI with a method reflecting the physical principles. It was shown that the this method is capable of exposing the nature of neural electric activities, although further development is required to perfect the strategy

    Dietary nitrate reduces skeletal muscle oxygenation response to physical exercise : a quantitative muscle functional MRI study

    Get PDF
    © 2014 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.Peer reviewedPublisher PD

    Functional brain imaging with fMRI and MEG

    Get PDF
    The work described in this thesis was performed by the author, except where indicated. All the studies were accomplished on the 3 Tesla system within the Magnetic Resonance Centre at the University of Nottingham, and the Wellcome Trust MEG Laboratory at the Aston University during the period between October 1999 and June 2005. Functional Magnetic Resonance Imaging (fMRI) and Magnetoencephalography (MEG) are two promising brain function research modalities, sensitive to the hemodynamic and electrophysiological responses respectively during brain activites. The feasibility of joint employment of both modalities was examined in both spatial and temporal domains. A somatosensory tactile stimulus was adopted to induce simple functional reaction. It was shown that a reasonable spatial correspondence between fMRI and MEG can be established. Attempts were made on MEG recordings to extract suitable aspects for temporal features matching fMRI with a method reflecting the physical principles. It was shown that the this method is capable of exposing the nature of neural electric activities, although further development is required to perfect the strategy

    Grey and white matter differences in Chronic Fatigue Syndrome : A voxel-based morphometry study

    Get PDF
    Conflicts of interest and source of funding The authors declare no conflicts of interest. This research was funded by the Medical Research Council (MR/J002712/1). AF is supported by Research Capability Funding from the Newcastle upon Tyne Hospitals NHS Foundation Trust and the Northumberland, Tyne and Wear NHS Foundation Trust.Peer reviewedPublisher PD

    Disease activity and cognition in rheumatoid arthritis : an open label pilot study

    Get PDF
    Acknowledgements This work was supported in part by NIHR Newcastle Biomedical Research Centre. Funding for this study was provided by Abbott Laboratories. Abbott Laboratories were not involved in study design; in the collection, analysis and interpretation of data; or in the writing of the report.Peer reviewedPublisher PD

    FairBench: A Four-Stage Automatic Framework for Detecting Stereotypes and Biases in Large Language Models

    Full text link
    Detecting stereotypes and biases in Large Language Models (LLMs) can enhance fairness and reduce adverse impacts on individuals or groups when these LLMs are applied. However, the majority of existing methods focus on measuring the model's preference towards sentences containing biases and stereotypes within datasets, which lacks interpretability and cannot detect implicit biases and stereotypes in the real world. To address this gap, this paper introduces a four-stage framework to directly evaluate stereotypes and biases in the generated content of LLMs, including direct inquiry testing, serial or adapted story testing, implicit association testing, and unknown situation testing. Additionally, the paper proposes multi-dimensional evaluation metrics and explainable zero-shot prompts for automated evaluation. Using the education sector as a case study, we constructed the Edu-FairBench based on the four-stage framework, which encompasses 12,632 open-ended questions covering nine sensitive factors and 26 educational scenarios. Experimental results reveal varying degrees of stereotypes and biases in five LLMs evaluated on Edu-FairBench. Moreover, the results of our proposed automated evaluation method have shown a high correlation with human annotations

    Tissue microstructural changes in dementia with Lewy bodies revealed by quantitative MRI.

    Get PDF
    We aimed to characterize dementia with Lewy bodies (DLB) by the quantitative MRI parameters of longitudinal relaxation time (qT1) and transverse relaxation time (qT2). These parameters reflect potential pathological changes in tissue microstructures, which may be detectable noninvasively in brain areas without evident atrophy, so may have potential value in revealing the early neuropathological changes in DLB. We conducted a cross-sectional study of subjects with DLB (N = 35) and similarly aged control participants (N = 35). All subjects underwent a detailed clinical and neuropsychological assessment and structural and quantitative 3T MRI. Quantitative MRI maps were obtained using relaxation time mapping methods. Statistical analysis was performed on gray matter qT1 and qT2 values. We found significant alterations of quantitative parameters in DLB compared to controls. In particular, qT1 decreases in bilateral temporal lobes, right parietal lobes, basal ganglia including left putamen, left caudate nucleus and left amygdala, and left hippocampus/parahippocampus; qT2 decreases in left putamen and increases in left precuneus. These regions showed only partial overlap with areas where grey matter loss was found, making atrophy an unlikely explanation for our results. Our findings support that DLB is predominantly associated with changes in posterior regions, such as visual association areas, and subcortical structures, and that qT1 and qT2 measurement can detect subtle changes not seen on structural volumetric imaging. Hence, quantitative MRI may compliment other imaging techniques in detecting early changes in DLB and in understanding neurobiological changes associated with the disorder.This is the author accepted manuscript. The final version is available from Springer via http://dx.doi.org/10.1007/s00415-014-7541-

    q-Space Imaging Yields a Higher Effect Gradient to Assess Cellularity than Conventional Diffusion-weighted Imaging Methods at 3.0 T : A Pilot Study with Freshly Excised Whole-Breast Tumors

    Get PDF
    N.S. supported by Biotechnology and Biological Sciences Research Council (1654748, BB/M010996/1). Study supported by the National Health Service Grampian Endowment Fund (15/1/052).Peer reviewedPublisher PD
    corecore