6,049 research outputs found

    Testing Measurement Invariance with Ordinal Missing Data: A Comparison of Estimators and Missing Data Techniques

    Get PDF
    Ordinal missing data are common in measurement equivalence/invariance (ME/I) testing studies. However, there is a lack of guidance on the appropriate method to deal with ordinal missing data in ME/I testing. Five methods may be used to deal with ordinal missing data in ME/I testing, including the continuous full information maximum likelihood estimation method (FIML), continuous robust FIML (rFIML), FIML with probit links (pFIML), FIML with logit links (lFIML), and mean and variance adjusted weight least squared estimation method combined with pairwise deletion (WLSMV_PD). The current study evaluates the relative performance of these methods in producing valid chi-square difference tests (Δχ2) and accurate parameter estimates. The result suggests that all methods except for WLSMV_PD can reasonably control the type I error rates of (Δχ2) tests and maintain sufficient power to detect noninvariance in most conditions. Only pFIML and lFIML yield accurate factor loading estimates and standard errors across all the conditions. Recommendations are provided to researchers based on the results

    Energy shift of the three-particle system in a finite volume

    Full text link
    Using the three-particle quantization condition recently obtained in the particle-dimer framework, the finite-volume energy shift of the two lowest three-particle scattering states is derived up to and including order L6L^{-6}. Furthermore, assuming that a stable dimer exists in the infinite volume, the shift for the lowest particle-dimer scattering state is obtained up to and including order L3L^{-3}. The result for the lowest three-particle state agrees with the results from the literature, and the result for the lowest particle-dimer state reproduces the one obtained by using the Luescher equation.Comment: Final version published in Phys. Rev. D. Corrected typos: factor of 2 in Eq. (115) [previously Eq. (114)] and factor 6 in Eq. (120) [previously Eq. (119)

    Neural 3D Scene Reconstruction from Multiple 2D Images without 3D Supervision

    Full text link
    Neural 3D scene reconstruction methods have achieved impressive performance when reconstructing complex geometry and low-textured regions in indoor scenes. However, these methods heavily rely on 3D data which is costly and time-consuming to obtain in real world. In this paper, we propose a novel neural reconstruction method that reconstructs scenes using sparse depth under the plane constraints without 3D supervision. We introduce a signed distance function field, a color field, and a probability field to represent a scene. We optimize these fields to reconstruct the scene by using differentiable ray marching with accessible 2D images as supervision. We improve the reconstruction quality of complex geometry scene regions with sparse depth obtained by using the geometric constraints. The geometric constraints project 3D points on the surface to similar-looking regions with similar features in different 2D images. We impose the plane constraints to make large planes parallel or vertical to the indoor floor. Both two constraints help reconstruct accurate and smooth geometry structures of the scene. Without 3D supervision, our method achieves competitive performance compared with existing methods that use 3D supervision on the ScanNet dataset.Comment: 10 pages, 6 figure

    Study on the Stability of High-Speed Turning Braking Based on the Hardware-in-the-Loop Test

    Get PDF
    During the tire cornering braking process, busses easily cause traffic accidents such as slewed or tail flick if the tire is not locked. Therefore, in the process of cornering braking, the theoretical controlled slip rate of approximately 0.2 is not sufficient. To improve the stability of the vehicle, the Hardware-in-the-Loop Test is introduced. The fuzzy PID algorithm is used to calculate the tire slip rate of four tires using the actual yaw velocity and sideslip angle values and the expected difference among the values. The high-speed vehicle was tested on high- and low-adhesion roads. The study shows that this method outputs the new slip rate, improves the vehicle stability in the loss of braking efficiency, further perfects the study of the antilock braking system and has practical significance
    corecore