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Abstract 
Ordinal missing data are common in measurement equivalence/invariance (ME/I) testing studies. However, 
there is a lack of guidance on the appropriate method to deal with ordinal missing data in ME/I testing. Five 
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methods may be used to deal with ordinal missing data in ME/I testing, including the continuous full information 
maximum likelihood estimation method (FIML), continuous robust FIML (rFIML), FIML with probit links (pFIML), 
FIML with logit links (lFIML), and mean and variance adjusted weight least squared estimation method combined 
with pairwise deletion (WLSMV_PD). The current study evaluates the relative performance of these methods in 
producing valid chi-square difference tests (𝛥𝛥𝜒𝜒2) and accurate parameter estimates. The result suggests that all 
methods except for WLSMV_PD can reasonably control the type I error rates of 𝛥𝛥𝜒𝜒2 tests and maintain 
sufficient power to detect noninvariance in most conditions. Only pFIML and lFIML yield accurate factor loading 
estimates and standard errors across all the conditions. Recommendations are provided to researchers based on 
the results. 

Keywords 
Measurement invariance, missing data, ordinal data analysis 

Introduction 
Measurement equivalent/invariance (ME/I) is an important and desirable property for psychological tests or 
scales (Brown, 2006). ME/I concerns whether the relationships among observable indicators and underlying 
latent constructs are identical across groups (Millsap, 2011). ME/I is typically tested through a multistep process 
using multiple group confirmatory factor analysis (MG-CFA) in the structural equation modeling (SEM) 
framework. This process involves a series of chi-square difference (𝛥𝛥𝜒𝜒2) tests between nested MG-CFA models, 
through which the level of ME/I can be established (described in detail below). 

Given the predominant use of Likert-type scales in the social and behavioral sciences, the indicators are often 
ordinal in nature. In addition, missing data are also likely to occur. Previous studies have shown that problems 
with either ordinal or missing data can affect ME/I tests using MG-CFA (e.g., Sass, Schmitt, & Marsh, 2014; 
Widaman, Grimm, Early, Robins, & Conger, 2013). However, few studies have considered the case where the 
two problems co-exist. 

At least five methods may be used for ME/I testing with the presence of ordinal missing data. We refer to them 
as continuous full information likelihood method (FIML), robust continuous full information likelihood method 
(rFIML), full information likelihood method with probit links (pFIML), full information likelihood method with 
logit links (lFIML), and the mean and variance adjusted weight least squared estimation method (WLSMV) 
combined with pairwise deletion (WLSMV_PD). These methods all have their strengths and limitations. Briefly 
speaking, the four FIML-based methods handle missing data directly, however, they either assume that the 
ordinal data are continuous (FIML and rFIML) or cannot include auxiliary variables (missing data predictors that 
are not part of the tested model) into the analyses due to computational burden (pFIML and lFIML). 

WLSMV_PD, conversely, accounts for the ordinal nature of the data and auxiliary variables simultaneously. 
However, pairwise deletion is not an ideal method to deal with missing data. Note that multiple imputation, a 
more advanced missing data technique, may be combined with WLSMV to deal with missing ordinal data 
(Teman, 2012). Limited research in the past has shown that multiple imputation combined with WLSMV will 
produce accurate parameter and standard error estimates (Asparouhov & Muthén, 2010a; Teman, 2012). 
However, there is so far no good way to pool the 𝛥𝛥𝜒𝜒2 test statistics across the imputed data sets when WLSMV 
is used (Liu et al., 2017). Given that 𝛥𝛥𝜒𝜒2 tests are critical for ME/I testing, this is an indisputable limitation. Thus, 
we did not include this combination in the current study. 

Considering that more than one method may be used to deal with ordinal missing data in ME/I testing and none 
of them seem to be ideal in theory, the question natually arises as to which method should be preferred. A 
guidance for this issue would be helpful for empirical researchers. Thus, the purpose of the study is to evaluate 
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the relative performances of these five methods on producing accuracy 𝛥𝛥𝜒𝜒2 tests for ME/I testing, accurate 
parameter estimates, and standard errors using a simulation study. 

The rest of the article is organized as follows. The typical process of ME/I testing using MG-CFA was reviewed 
first, followed by a description of the five methods to deal with missing ordinal data in ME/I testing. The design 
and results of the simulation study are then presented. An empirical example is also provided to illustrate the 
five methods. Based on the simulation results, practical recommendations to researchers are provided. The 
article is concluded by a discussion of limitations of the current study and directions for future research. 

A typical ME/I testing process 
There are four commonly tested invariance models: configural, metric, scalar, and strict invariance models, 
representing four levels of measurement invariance from least restricted to most restricted, respectively. In the 
configural invariance model, the factorial patterns (i.e., the patterns of free and fixed factor loadings) are 
assumed to be equal across groups. The metric invariance model is a configural model plus equivalent factor 
loadings across groups. The scalar invariance model goes beyond the metric model by further assuming 
equivalent thresholds across groups, and the strict invariance model is the scalar model plus equivalent residual 
variances across groups. 

A typical ME/I testing process involves comparing the above four models in sequence to determine which level 
of measurement invariance is achieved (Kline, 2015). A configural invariance model is tested first in terms of its 
model fit. With a sufficient model fit of the configural invariance model, the metric invariance model is tested 
against the configural model using a 𝛥𝛥𝜒𝜒2 test. If the 𝛥𝛥𝜒𝜒2 test is not significant, indicating that adding equality 
constraints on factor loadings will not cause a significant decrease in model fit, then, the metric invariance 
model is retained. Researchers can further test the scalar invariance model against the metric invariance model 
using a 𝛥𝛥𝜒𝜒2test, and so forth. 

Note that when indicators are ordinal, past research suggested skipping the metric invariance model and directly 
comparing the configural model to the scalar invariance model. The rationale is that the probability of an 
individual endorsing a certain category in an item is jointly determined by the factor loadings and thresholds, 
which makes it reasonable to test the two sets of parameters simultaneously (Sass et al., 2014). We, thus, 
followed the suggestion in our study. 

Methods to deal with ordinal missing data in ME/I tests 
The past research on ME/I testing in SEM has been focused on complete and continuous data (e.g., Meredith, 
1993). Only until recently, attention has been paid to issues raised by missing data (e.g., Widaman et al., 2013). 
As aforementioned, five methods may be used for ME/I testing with the presence of missing data. These 
methods are described in detail below. 

Continuous full information maximum likelihood 
Full information maximum likelihood method is one of most effective methods for handling missing data in SEM 
for ignorable missingness (Enders, 2010). It accounts for missing data by allowing case-wise log likelihood 
functions tailored according to the missing data pattern for each case and can use all the available information 
in the data simultaneously. Although, likelihood functions can be written based on different distributional 
assumptions; the typical one is built based on the multivariate normal assumption in SEM. We refer to this 
method as FIML in the current study. Despite that FIML assumes multivariate normality, it is still used in practice 
for ordinal indicators if it is reasonable to treat the ordinal data as continuous (e.g., Fokkema, Smits, Kelderman, 
& Cuijpers, 2013). The log likelihood function of FIML for case i is as 

𝑙𝑙𝑖𝑖(𝛉𝛉) = 𝐾𝐾𝑖𝑖 −
1
2

log |𝚺𝚺(𝛉𝛉)𝑖𝑖 | − 1
2

(𝑥𝑥𝑖𝑖 − 𝛍𝛍𝑖𝑖)′𝚺𝚺(𝛉𝛉)𝑖𝑖−1(𝑥𝑥𝑖𝑖 − 𝛍𝛍𝑖𝑖).(1) 
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Ki is a constant. 𝑥𝑥𝑖𝑖 represents the observed data for case i. 𝚺𝚺𝑖𝑖 and 𝛍𝛍𝑖𝑖 represent the model implied covariance 
matrix and mean vector for case i, respectively. The log likelihood for the whole sample is simply a sum of the 
individual log likelihoods (Arbuckle, 1996, p. 248; Yuan & Bentler, 2000, pp.167–168). The FIML estimates of 
model parameters can be then obtained by maximizing 𝑙𝑙(𝛉𝛉),, which can be represented as  

𝑙𝑙(𝛉𝛉) = � 𝑙𝑙𝑖𝑖(𝛉𝛉)𝑁𝑁
𝑖𝑖=1 . (2) 

The test statistic of FIML is then calculated as 

𝑇𝑇FIML = −2(𝑙𝑙(𝛉𝛉�)− 𝑙𝑙(𝛃𝛃�)),(3) 
where 𝑙𝑙(𝛉𝛉�)is the maximized log likelihood and 𝑙𝑙(𝛃𝛃�)is the corresponding maximized log likelihood under a 
saturated model (Yuan & Bentler, 2000). Based on 𝑇𝑇FIML,, the 𝛥𝛥𝜒𝜒2 between two nested models is simply the 
difference in 𝑇𝑇FIML between the two models. Say model A is nested within model B, the 𝛥𝛥𝜒𝜒2 between the two 
models is calculated as 

𝛥𝛥𝜒𝜒2 = 𝑇𝑇FIML(A) − 𝑇𝑇FIML(B) = −2(𝑙𝑙(𝛉𝛉�𝐴𝐴)− 𝑙𝑙(𝛉𝛉�𝐵𝐵)).(4) 

Researchers can include auxiliary variables into the FIML analysis with Graham’s saturated model method by 
correlating all the residual terms of indicators with the auxiliary variables. Including auxiliary variables can help 
reduce the bias due to missing data (Graham, 2003). 

Continuous robust full information maximum likelihood 
One limitation of FIML is that it assumes multivariate normality. With nonnormally distributed data, this 
assumption is violated, which could lead to biased standard error estimates and test statistics (e.g., 
Teman, 2012). Corrections on the standard error estimates and test statistics from FIML have, thus, been 
developed (Yuan & Bentler, 2000). Specifically, an adjusting factor (c) is multiplied to the TFIML in Equation (3) to 
mitigate the influence of continuous nonnormality as 

𝑇𝑇rFIML = 𝑐𝑐 × 𝑇𝑇FIML.(5) 

For the standard errors, sandwich-type standard errors are calculated using the second derivative of the 
likelihood function. Detailed information on these corrections can be found in Yuan and Bentler (2000). 

With rFIML, 𝛥𝛥𝜒𝜒2 cannot be simply calculated by taking the difference between the test statistics for two nested 
models, but using the formula 

𝛥𝛥𝜒𝜒2 = TrFIML_A×𝑐𝑐𝐴𝐴−TrFIML_B×𝑐𝑐𝐵𝐵
𝑐𝑐𝑑𝑑

,(6) 

where cA and cB are the corrections factors for model A and model B, respectively. cd is the correction factor 
for 𝛥𝛥𝜒𝜒2, which is calculated as (See also www.statmodel.com/chidiff.shtml): 

𝑐𝑐𝑑𝑑 = 𝑑𝑑𝑓𝑓𝐴𝐴×𝑐𝑐𝐴𝐴−𝑑𝑑𝑓𝑓𝐵𝐵×𝑐𝑐𝐵𝐵
𝑑𝑑𝑓𝑓𝐴𝐴−𝑑𝑑𝑓𝑓𝐵𝐵

.(7) 

Similar to FIML, auxiliary variables can be included in rFIML using Graham’s saturated model approach; while 
rFIML may have some corrections for the nonnormality, it is still flawed by assuming the data to be continuous. 
Past research has shown that this limitation (i.e., treating ordinal as continuous) could result in biased point 
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estimates and test statistics in SEM for ordinal data (e.g., Li, 2014, 2016; Teman, 2012), even though the biases 
may not often be substantive (Jia, 2016; Rhemtulla, Brosseau-Liard, & Savalei, 2012). 

Full information maximum likelihood methods with probit links and logit links 
Besides FIML and rFIML, researchers could also use the full maximum likelihood information methods based on 
logit (lFIML) or probit links (pFIML) to estimate latent variable models with ordinal missing data. lFIML and 
pFIML are widely used in the framework of item response theory (Wirth & Edwards, 2007). However, they are 
not much used in SEM. 

Unlike FIML and rFIML which use a linear function to link the latent variables and corresponding indicators, 
lFIML and pFIML use casewise probit/logit link functions. To illustrate, let 𝑦𝑦𝑗𝑗  be the observed ordinal response 
for item j (j = 1….p) which has C categories, and 𝜂𝜂  be the score of the latent variable. lFIML assumes that for a 
participant whose latent variable score is 𝜂𝜂𝑖𝑖, the probability of this participant endorsing a certain 
category k (k = 1, 2, … , C) for item j can be written as (see Samejima, 1969) 

 

𝑇𝑇𝑗𝑗 = 𝑃𝑃�𝑦𝑦𝑗𝑗 = 𝑘𝑘|𝜂𝜂𝑖𝑖� =

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 1 − 1

1+ exp (−𝐷𝐷𝑎𝑎𝑗𝑗(𝜂𝜂𝑖𝑖−𝑏𝑏𝑗𝑗1))
1

1+ exp (−𝐷𝐷𝑎𝑎𝑗𝑗(𝜂𝜂𝑖𝑖−𝑏𝑏𝑗𝑗1))
− 1

1+ exp (−𝐷𝐷𝑎𝑎𝑗𝑗(𝜂𝜂𝑖𝑖−𝑏𝑏𝑗𝑗2))

⋮
1

1+ exp (−𝐷𝐷𝑎𝑎𝑗𝑗(𝜂𝜂𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗−2))
− 1

1+ exp (−𝐷𝐷𝑎𝑎𝑗𝑗(𝜂𝜂𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗−1))
1

1+ exp (−𝐷𝐷𝑎𝑎𝑗𝑗(𝜂𝜂𝑖𝑖−𝑏𝑏𝑗𝑗𝑗𝑗−1))

 
 
 
 
 
 
 
 

𝑖𝑖𝑖𝑖
 
𝑖𝑖𝑖𝑖
⋮
 
𝑖𝑖𝑖𝑖
 
𝑖𝑖𝑖𝑖

𝑘𝑘 = 1
 

𝑘𝑘 = 2
 
 

𝑘𝑘 = 𝐶𝐶 − 1
 

𝑘𝑘 = 𝐶𝐶 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

. (8) 

D is a scaling constant (typical 1.7) which is used to rescale the results from a logit model to the original scale 
(i.e., scale in probit model, Wirth & Edwards, 2007). 𝑎𝑎𝑗𝑗 and 𝑏𝑏𝑗𝑗 are the slope and difficulties parameters in a IRT 
framework, respectively. They can be analytically transformed to parameters that are widely used in SEM 
framework such as factor loadings (Takane & De Leeuw, 1987; Wirth & Edwards, 2007). 

One may replace the logit link in Equation (8) with a probit link to form the equation for a probit model (e.g., 
Asparouhov & Muthén, 2016). The probability function can be extended to all questions (variables) and all 
participants in the sample to form the fit function for lFIML(or pFIML). This fit function is then maximized to 
obtain the estimates. 

Superior to the other methods, lFIML or pFIML is capable of handling ordinal missing data using full information 
maximum likelihood without pretending the data to be continuous. However, they are not limit free. One 
limitation is that they may not accommodate auxiliary variables in the estimation process with Graham’s 
saturated model approach. The reason is that the estimation process of pFIML and lFIML usually involes numeric 
intergrations or other computational demanding methods (Wirth & Edwards, 2007). Adding correlations 
between auxiliary variables and residuals will dramatically increase the dimensionality of numerical integration, 
which often creates computational problems. Thus, when missingness is determined by auxiliary variables, using 
lFIML or pFIML without the auxiliary variables will result in a situation that is analogous to missing not at random 
(MNAR). This situation is referred to as indirect MNAR in Enders (2010). As a result, the bias due to missing data 
cannot be completely removed by IFIML or pFIML. 

WLSMV with pairwise deletion 
WLSMV is an extension of the weighted least square estimation method (WLS) for ordinal data. WLS assumes 
that for each ordinal indicator, there is a normally distributed latent response variate underlying the indicator. 
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Let 𝑦𝑦𝑗𝑗  be an observed ordinal response for item j which has C categories and 𝑦𝑦𝑗𝑗∗ be the latent response variate 
underlying item j; 𝑦𝑦𝑗𝑗  can be created by categorizing 𝑦𝑦𝑗𝑗∗ based on C – 1 thresholds �𝜏𝜏𝑗𝑗,1,𝜏𝜏𝑗𝑗,2, … . 𝜏𝜏𝑗𝑗,𝑐𝑐−1�as 

𝑦𝑦𝑗𝑗 =

⎩
⎪
⎨

⎪
⎧ 1

2
⋮

𝐶𝐶 − 1
𝐶𝐶

 
 
 
 
 

𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖
⋮
𝑖𝑖𝑖𝑖
𝑖𝑖𝑖𝑖

 
 
 
 
 

𝑦𝑦𝑗𝑗∗ ≤ 𝜏𝜏𝑗𝑗,1

𝜏𝜏𝑗𝑗,1 ≤ 𝑦𝑦𝑗𝑗∗ ≤ 𝜏𝜏𝑗𝑗,2
⋮

𝜏𝜏𝑗𝑗,𝑐𝑐−2 < 𝑦𝑦𝑗𝑗∗ ≤ 𝜏𝜏𝑗𝑗,𝑐𝑐−1

𝜏𝜏𝑗𝑗,𝑐𝑐−1 < 𝑦𝑦𝑗𝑗∗ ⎭
⎪
⎬

⎪
⎫

.(9) 

A typical estimation process of WLS involves three steps (Muthén, 1984; Muthén, De Toit, & Spisic, 1997; Wirth 
& Edwards, 2007). First, univariate information of each variable in the sample is used to obtain the maximum 
likelihood estimates of the sample implied thresholds. Second, polychoric correlations between each pair of the 
observed indicators are calculated by treating the thresholds obtained in step 1 as fixed (more detail 
information on the two steps of estimation can be found in Bollen, 1989, pp. 439–443; Olsson, 1979). Third, the 
estimated thresholds and polychoric correlations are used to form the discrepancy function which is minimized 
to obtain the estimates for the model parameters. The discrepancy function 𝐹𝐹WLS can be represented as 

𝐹𝐹WLS = (𝐬𝐬 − 𝛔𝛔(𝛉𝛉))′𝐖𝐖  −1(𝐬𝐬 − 𝛔𝛔(𝛉𝛉)). (10) 
s is a vector of unique elements in the sample polychoric correlation matrix and thresholds. 𝛔𝛔(𝛉𝛉) is a vector of 
model implied polychoric correlations and thresholds. W is the weight matrix, which is usually a consistent 
estimate of the true population asymptotic covariance matrix of s (see equation (4) in Muthén et al., 1997). Note 
that the length or the dimensions of s, 𝛔𝛔(𝛉𝛉), and W are depending on the model complexity (e.g., number of 
indicators) but not sample size. 

The test statistic of WLS can be calculated using the minimized fit function 𝐹𝐹WLS(𝛉𝛉�)as 

𝑇𝑇WLS = (𝑁𝑁 − 1) × 𝐹𝐹WLS(𝛉𝛉�),𝑑𝑑𝑖𝑖 = 𝑝𝑝 ∗ –  𝑞𝑞, (11) 
where N is sample size, p* is the number of unique elements in s, q is the number of estimated parameters. 

WLS estimates are consistent and asymptotically follow a normal distribution (Muthén, 1984; Muthén & 
Satorra, 1995). However, past research showed that WLS required a large sample size, thus, is not practical for 
typical research in social and behavioral sciences (e.g., Flora & Curran, 2004). To mitigate the problem, a 
solution is to invert only the diagonal elements of the weight matrix rather than the whole W matrix (Muthén 
et al., 1997). This approach is named diagonal weighted least squares estimation (DWLS). For DWLS, the fit 
function can be written as 

𝐹𝐹DWLS = (𝐬𝐬 − 𝛔𝛔(𝛉𝛉))′𝐖𝐖𝐷𝐷 −1(𝐬𝐬 − 𝛔𝛔(𝛉𝛉)). (12) 

WD is the diagonalization of the W in Equation (10) (Wirth & Edwards, 2007). 

Using only diagonal elements of the weight matrix can result in information loss, which can potentially distort 
the test statistic and standard error estimates (Savalei, 2014). Several methods have been proposed to correct 
the test statistic and standard error estimates for the information loss. One method corrects the test statistic 
such that the mean and variance of the test statistic will approximate those of a 𝜒𝜒2 distribution with 
corresponding degrees of freedom (DiStefano & Morgan, 2014; Muthén et al., 1997). DWLS with this correction 
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is named WLSMV, which has become most popular. Past research found that WLSMV outperformed the others 
in terms of the accuracy of 𝜒𝜒2 statistics (DiStefano & Morgan, 2014); it is, thus, considered in our article. 
With WLSMV, the 𝛥𝛥𝜒𝜒2 test statistic between two nested models (say model A nested under model B) is 
calculated as 
 
𝛥𝛥𝜒𝜒WLSMV

2 = 𝑁𝑁 × 𝑚𝑚 × (𝐹𝐹DWLS(𝛉𝛉�𝐴𝐴)− 𝐹𝐹DWLS(𝛉𝛉�𝐵𝐵)) + 𝑙𝑙. (13) 
m is a shift parameter and l is a scale parameter. They are used so that the mean and variance of 𝛥𝛥𝜒𝜒WLSMV

2  will 
approximate those of a 𝜒𝜒2distribution with the df be equal to the difference in numbers of parameters between 
models A and B (Asparouhov & Muthén, 2006, 2010b). Note that 𝐹𝐹DWLS�𝛉𝛉�𝐴𝐴�and 𝐹𝐹DWLS(𝛉𝛉�𝐵𝐵)in Equation (13) are 
the minimized values of the fit functions from model A and B but not the 𝜒𝜒2 statistics from the two models. 
More details on how 𝛥𝛥𝜒𝜒WLSMV

2  is calculated can be found in Kite, Johnson, and Chong (2017). 

An advantage of WLSMV is that it can handle the multidimensional models that lFIML and pFIML have difficulty 
to estimate. Auxiliary variables can be also included using Graham’s saturated model with WLSMV. However, 
WLSMV has its own limitation. As we mentioned earlier, in the first two stages of the estimation process of 
WLSMV, only the univariate and bivariate information in the data are used to calculate sample thresholds and 
polychoric correlations. WLSMV is not a full information estimation method. As a result, it cannot directly deal 
with missing data by itself. By default, SEM software (e.g., Mplus) uses traditional deletion methods such as 
pairwise deletion combined with WLSMV (i.e., WLSMV_PD) to handle the missing data (Asparouhov & 
Muthén, 2010b). Given that previous studies have found that pairwise deletion could result in an inflated type I 
error rate for the test statistic in SEM (e.g., Savalei & Bentler, 2005), we expect that this limitation also applies to 
the 𝛥𝛥𝜒𝜒 

2 from WLSMV_PD. 

Purpose of the current research 
As can be seen from the description above, none of the methods seems optimal for testing ME/I when ordinal 
missing data present. Thus, it is not clear which method will perform best and what method(s) would be 
acceptable in ME/I testing. To our knowledge, no study so far has thoroughly compared the performances of 
these methods for ME/I testing with ordinal missing data. Thus, empirical researchers have to select a method 
based on their own’ personal preferences without solid justifications (e.g., Fokkema et al., 2013). To fill in this 
gap in the literature, we conducted a simulation study to compare the relative performances of these methods. 

Design of the simulation study 
We used a population model similar to that used in Sass et al. (2014) as the baseline model to generate data. 
This model was a two-group (say groups A and B), single-factor CFA model with ten indicators (see Figure 1). The 
indicators were all 5-point Likert-type variables. The model parameters included the factor loadings and 
thresholds for each group. The configural invariance model was identified by fixing the latent factor variances in 
two groups to be one. 

Figure 1. The population model. Note: AUXA and AUXB represent the auxiliary variables for groups A and B, 
respectively. LVA and LVB represent the latent variables for groups A and B, respectively. VA1 – VB10 are ordinal 
indicators and λs are loadings. λA1 – λB7 are fixed at 0.6. Their thresholds are fixed at τn = –1.3, –0.47, 0.47, 1.3 in 
symmetric conditions and τn = –0.253, 0.385, 0.842, 1.282 in asymmetric conditions. In loading noninvariant 
conditions, 𝜆𝜆𝐵𝐵8 − 𝜆𝜆𝐵𝐵10 are equal to 0.6 minus a specific value, depending on the amount of noninvariance. 
Similarly, the thresholds for items 8–10 in group B are equal to their default values (symmetric or asymmetric) 
minus a specific value in threshold noninvariant conditions, depending on the amount of noninvariance. The 
residual term of each indicator follows a normal distribution with mean = 0 and variance = 1 – square of the 
corresponding loading. 
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Figure 1.The population model. Note:AUX A and AUX B represent the auxiliary variables for groups A and B, respectively. LV 
A and LV B represent the latent variables for groups A and B, respectively. V A1 –V B10 are ordinal indicators andks are 
loadings.k A1 –k B7 are fixed at 0.6. Their thresholds are fixed ats n ¼–1.3,–0.47, 0.47, 1.3 in symmetric conditions ands n 
¼–0.253, 0.385, 0.842, 1.282 in asymmetric conditions. In loading noninvariant conditions,k B8 k B10 are equal to 0.6 minus 
a specific value, depending on the amount of noninvariance. Similarly, the thresholds for items 8–10 in group B are equal to 
their default values (symmetric or asymmetric) minus a specific value in threshold noninvariant conditions, depending on 
the amount of noninvariance. The residual term of each indicator follows a normal distribution with mean¼0 and 
variance¼1–square of the corresponding loading. 

The factor loadings in the population model were all set to 0.6, except for the conditions where noninvariance 
was presented in factor loadings. We varied the thresholds in the current study to generate symmetric and 
asymmetric thresholds. We also created auxiliary variables (one for each group) that correlated with the latent 
factor with r = 0.5. The auxiliary variable B was used to generate missing data in group B as explained below. 

Design factors 
The design factors in the study include (1) sample size, (2) location of noninvariance, (3) magnitude of 
noninvariance, (4) distribution of thresholds, and (5) missing data proportion. The factors were all between 
replication factors, except for the missing data proportions. 

Sample size 
The total sample size was varied at three levels: 300 (150 per group), 500 (250 per group), or 1000 (500 per 
group), representing small, medium, or large sample sizes. These settings are identical to those used in Sass 
et al. (2014) and similar to those used in other previous studies (e.g., Chen, 2007; Cheung & Rensvold, 2002). 

Distribution of thresholds 
Population thresholds of items were set to be either symmetric (τn = –1.3, –0.47, 0.47, 1.3) or asymmetric (τn = –
0.253, 0.385, 0.842, 1.282). These settings are identical to those used in Sass et al. (2014). 

Location of noninvariance 
We set the occurrence of noninvariance to the last three items in group B (i.e., items 8–10 in group B), on either 
their loadings or thresholds. For convenience, we referred to the conditions containing noninvariant items as 
noninvariant conditions. Depending on the parameters for which the items are noninvariant, there were loading 
noninvariant conditions and threshold noninvariant conditions. In contrast, we refer to the conditions where all 
items were invariant on loadings and thresholds as invariant conditions. 
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Magnitude of noninvariance 
For noninvariant conditions, we varied the magnitude of noninvariance at four levels. Specifically, for a loading 
noninvariant condition, the loadings of items 8–10 in group B were 0.6 minus 0.2, 0.3, 0.4, or 0.5, representing 
an increasing magnitude of nonvariance. In a threshold noninvariant condition, 0.2, 0.3, 0.4, or 0.5 was also 
subtracted from all of the thresholds of items 8–10 in group B. Note that we examined a wider range for the 
magnitude of noninvariance as compared to previous studies (e.g., Meade & Lautenschlager, 2004; Sass 
et al., 2014). More details of these parameter settings are presented in Table 1. 

Table 1. Model parameters for different amount of noninvariance across conditions. 
    Group B     
Parameter Group 

A 
Amount of 
noninvariance 
= 0 

0.2 0.3 0.4 0.5 

Loadings 
(items 1–7) 

.6 .6 .6 .6 .6 .6 

Loadings 
(items 8–
10) 

.6 .6 .4 .3 .2 .1 

Symmetric             
Thresholds 
(items 1–7) 

(–1.3, 
–0.47, 
0.47, 
1.3) 

(–1.3, –0.47, 
0.47, 1.3) 

(–1.3, 
–0.47, 
0.47, 
1.3) 

(–1.3, –0.47, 0.47, 1.3) (–1.3, –0.47, 0.47, 1.3) (–1.3, –0.47, 
0.47, 1.3) 

Thresholds 
(items 8–
10) 

(–1.3, 
–0.47, 
0.47, 
1.3) 

(–1.3, –0.47, 
0.47, 1.3) 

(–
1.5, –
0.67, 
0.27, 
1.1) 

(–1.6, –0.77, 0.17, 1.0) (–1.7, –0.87, 0.07, 0.9) (–1.8, –0.97, –
0.03, 0.8) 

Asymmetric             
Thresholds 
(items 1–7) 

(–
0.253, 
0.385, 
0.842, 
1.282) 

(–0.253, 
0.385, 0.842, 
1.282) 

(–
0.253, 
0.385, 
0.842, 
1.282) 

(–0.253, 0.385, 0.842, 
1.282) 

(–0.253, 0.385, 0.842, 
1.282) 

(–0.253, 
0.385, 0.842, 
1.282) 

Thresholds 
(item 8–10) 

(–
0.253, 
0.385, 
0.842, 
1.282) 

(–0.253, 
0.385, 0.842, 
1.282) 

(–
0.453, 
0.185, 
0.642, 
1.182) 

(–0.553, 0.085, 0.542, 
0.982) 

(–0.653, – 0.015, 0.442, 
0.882) 

(–
0.753, – 0.115, 
0.342, 0.782) 

Note: noninvariance occurs only on either loadings or thresholds for items 8–10 in group B. 
 
Missing data proportions 
Similar to noninvariance, we imposed missing data on only the last three items in group B. We varied missing 
data proportions of the three items at three levels: 0%, 30%, and 50%, representing none, moderate, and large 
proportions of missing data (see also Wu, Jia, & Enders, 2015). Note that even though 50% missing data rate 
may be high in practice, it could occur in situations such as planned missing data designs, longitudinal studies, or 
clinical studies. 

The missing data were generated as follows. First, the scores of the auxiliary variable B were rank ordered from 
the smallest to the largest. The probability of missing an item value for individual i was then calculated based on 
the rank order of the auxiliary variable for individual i (ranki). For example, let nb be the number of the 
observations in group B. The probability of having missing data on the eighth item for an individual i in group B is 
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computed as 1 − rank𝑖𝑖
𝑛𝑛𝑏𝑏

.This probability is then compared to a random number k drawing from a uniform 

distribution, k ∼ UNIF(0,1). If k is less than the calculated probability 𝑘𝑘 < 1 − rank𝑖𝑖
𝑛𝑛𝑏𝑏

, then individual i has a missing 

observation on the eighth item. This process is continued until the desired percentage (30% or 50%) of missing 
data is achieved for each of the three items. 

In total, there were 144 noninvariant conditions: sample sizes (3) ×× locations of noninvariance 
(2) ×× magnitudes of the noninvariance (4) ×× distributions of the thresholds (2) ×× missing data proportions (3); 
and 18 invariant conditions: sample sizes (3) ×× distributions of the thresholds (2) ×× missing data proportions 
(3). The model parameters of the between replication conditions are presented in Table 1. For each of the 
conditions, 500 data sets were generated using R. 3.3.1 (R core team, 2016). 

Implementations of the methods 
The five methods were applied to each of the data sets using Mplus 8.0 (Muthén and Muthén, 1998–2017). ME/I 
testing was conducted by comparing the configural invariance model to the scalar invariance model 
using 𝛥𝛥𝜒𝜒2 tests. The df of the 𝛥𝛥𝜒𝜒2 tests obtained from the FIML/rFIML, WLSMV_PD, and lFIML/pFIML were 19, 
38, and 48, respectively. Note that these numbers might slightly change (e.g., 38 -> 37) for replications where 
some categories within items are collapsed due to data sparseness. 

When missing data present, the auxiliary variables are included in the analysis using the saturated correlation 
model for FIML, rFIML, and WLSMV_PD but not for pFIML and lFIML, due to the computational limitations 
mentioned earlier. 

Outcomes 
Given that the main focus of the study is on the 𝛥𝛥𝜒𝜒2 tests, our primary outcomes were the type I error rates and 
power associated with the 𝛥𝛥𝜒𝜒2 tests obtained from the examined methods. The type I error rate is calculated 
for each of the invariance conditions, and power is calculated for each of the noninvariance conditions. Both are 
calculated as the proportion of replications that yield significant 𝛥𝛥𝜒𝜒2 tests (p < .05). Following Sass et al. (2014), 
we used 0.030–0.069 as the acceptable range for type I error rates, which was the 95% CI for the nominal level 
of the type I error rate given the number of replications used in the study. 

Our secondary outcomes were the bias of standardized loading estimates and their corresponding standard 
errors obtained from configural invariance models. We calculated relative biases (RBs) for loading estimates and 

their standard errors. The RB of a loading estimate was defined as (𝜃𝜃
�est−𝜃𝜃0)
𝜃𝜃0

,, where 𝜃𝜃0 is the population value of 

the loading and �̅�𝜃est is the average of loading estimates across all replications in a given cell of the conditions 

matrix. The RB of the standard error estimate for a loading was defined as 𝑆𝑆𝑆𝑆
����−𝑆𝑆𝑆𝑆emp

𝑆𝑆𝑆𝑆emp
,, where 𝑆𝑆𝑆𝑆����is the average 

estimated standard error in a given cell. 𝑆𝑆𝑆𝑆emp is the standard deviation of the associated parameter estimates 
across replications, which is considered as a proxy of the true standard error. Following Flora and Curran (2004) 
and Rhemtulla et al. (2012), we used |RB| > 0.1 as the threshold for substantially biased estimates. 

Results 
Nonconvergence and improper solutions 
All replications with four FIML methods converged. Only nine out of 81,000 replications had convergence 
problems with WLSMV_PD. As for the rates of improper solution (i.e., |standardized loadings| > 1) for the 
loading estimates, FIML and rFIML were more likely than WLSMV_PD, pFIML, and lFIML to produce improper 
estimates, especially with a small sample size and high missing data rate. The results are summarized in the 
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Supporting Information. Improper solution rates were also low for all methods (less than 10%), and they 
decreased as sample size increased. With N > 300, they were less than 2%. The replications with improper 
solutions were excluded from the rest of the analyses. 

Type I error rates of 𝛥𝛥𝜒𝜒2 tests 
The results for type I error rates are summarized in Table 2. In general, all FIML methods outperformed 
WLSMV_PD in controlling type I error rates at the nominal level when missing data present. The type I error 
rates from all FIML methods fell into the acceptable range (i.e., .030–.069) in most conditions. FIML and rFIML 
tended to slightly overcontrol the type I error rates when missing data were present, the sample size was small, 
and thresholds were asymmetric. In contrast, pFIML and lFIML tended to slightly undercontrol the type I error 
rates when missing data rates were high. 

Table 2. Type I error rate of 𝛥𝛥𝜒𝜒2tests. 
Method Thresholds N = 300   N = 600   N = 1000     

Complete 30% 
miss 

50% 
miss 

Complete 30% 
miss 

50% 
miss 

Complete 30% miss 50% 
miss 

FIML Asymmetric 0.043 0.032 0.021 0.054 0.042 0.049 0.046 0.042 0.060 
rFIML   0.034 0.032 0.018 0.058 0.042 0.055 0.058 0.048 0.058 
WLSMV_PD   0.062 0.072 0.130 0.058 0.094 0.250 0.046 0.108 0.388 
pFIML   0.056 0.060 0.066 0.060 0.064 0.070 0.052 0.064 0.074 
lFIML   0.050 0.054 0.064 0.058 0.058 0.076 0.056 0.072 0.068 
FIML Symmetric 0.04 0.036 0.046 0.028 0.026 0.032 0.032 0.032 0.054 
rFIML   0.056 0.050 0.054 0.040 0.040 0.040 0.056 0.044 0.064 
WLSMV_PD   0.062 0.088 0.180 0.036 0.092 0.292 0.052 0.122 0.550 
pFIML   0.06 0.058 0.074 0.066 0.052 0.064 0.054 0.078 0.088 
lFIML   0.06 0.054 0.070 0.060 0.054 0.062 0.046 0.070 0.076 

Note. The values fell out of the acceptable range (0.030 – 0.069) were highlighted. FIML = continuous FIML. 
rFIML = continuous robust FIML, pFIML = FIML with a probit link, lFIML = FIML with a logit link. 

The type I error rates from WLSMV_PD were highly influenced by the missing data rate. With complete data, the 
type I error rates from WLSMV_PD were all acceptable (.042–.058). However, when missing data presented, the 
type I error rates from WLSMV_PD were inflated (> .069), especially when the sample size and missing data rate 
were both large. For example, with 50% missing data and N = 1000, the type I error rate could be as high as 0.55. 

Power of 𝛥𝛥𝜒𝜒2 tests 
The results for power to detect noninvariance in loadings with symmetric thresholds are plotted in Figure 2. The 
results for thresholds noninvariant conditions and loadings noninvariant conditions with asymmetric thresholds 
are reported in the Supporting Information, given that the methods did not differ for these conditions. As shown 
in Figure 2, when the sample size was large (n = 1000), all methods had sufficient power (> 0.8) to detect 
noninvariance, except for very few conditions where the amount of noninvariance was small (amount of 
noninvariance = 0.2). Similarly, when the amount of noninvariance was sufficiently large (≥ .40), all methods had 
sufficient power to detect noninvariance regardless of sample size. In addition, holding the other factors 
constant, an increase in the missing data rate resulted in a decrease in the power of 𝛥𝛥𝜒𝜒2 for all methods. 

Figure 2. Power of the 𝛥𝛥𝜒𝜒2 tests on detecting noninvariant loadings when thresholds are 
symmetric. Note: FIML = continuous full information likelihood method, rFIML = robust continuous full 
information likelihood method, W_PD = weighted least squares means and variance adjusted estimators plus 
pairwise deletion, pFIML = FIML with a probit link, lFIML = FIML with a logit link. The power of WLSMV_PD in 
missing data conditions are spurious given its highly inflated type I error rates shown in these conditions in Table 
2. 
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Figure 2.Power of theDv 2 tests on detecting noninvariant loadings when thresholds are symmetric. Note:FIML¼continuous  
full  information  likelihood  method,  rFIML¼robust  continuous  full  information  likelihood  method, W_PD¼weighted 
least squares means and variance adjusted estimators plus pairwise deletion, pFIML¼FIML with a probit link, lFIML¼FIML 
with a logit link. The power of WLSMV_PD in missing data conditions are spurious given its highly inflated type I error rates 
shown in these conditions inTable 2. MULTIVARIATE BEHAVIORAL RESEARCH9 

All FIML methods had comparable power rates across all conditions, and differed from WLSMV_PD. As shown 
in Figure 2, WLSMV_PD had the highest power* (suspicious power) to detect noninvariance when the missing 
data rate was high, and either the sample size or amount of noninvariance was not large. However, given the 
inflated type I error rates associated with WLSMV_PD, these power* rates were not really meaningful. 

Relative biases of loading estimates 
For ease of presentation, we separated the items into two groups. The first group contained complete items for 
which the data were always complete. These items included all items in group A and items 1–7 in group B. The 
second group contained three items that had missing data in some of the conditions (i.e., items 8–10 in group 
B). We refer to these items as incomplete items. Given that the relative performances of the methods were 
similar in incomplete and complete items, we only presented the mean relative biases (MRBs) for incomplete 
items in Figure 3. The MRBs of loading estimates for complete items can be found in the Supporting Information. 
In addition, because the location of noninvariance and amount of noninvariance did not affect the relative 
performance of the methods, we collapsed the results across these two factors in Figure 3 as well. 
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Figure 3. Absolute mean relative biases across incomplete items in group B. Note: FIML = continuous full 
information likelihood method, rFIML = robust continuous full information likelihood method, W_PD = weighted 
least squares means and variance adjusted estimators plus pairwise deletion, pFIML = FIML with a probit link, 
lFIML = FIML with a logit link. FIML and rFIML had identical point estimates. Thus, their MRBs are completely 
overlapped in this figure. 

 
Figure 3.Absolute mean relative biases across incomplete items in group B. Note:FIML¼continuous  full  information  
likelihood  method,  rFIML¼robust  continuous  full  information  likelihood  method, W_PD¼weighted least squares means 
and variance adjusted estimators plus pairwise deletion, pFIML¼FIML with a probit link, lFIML¼FIML with a logit link. FIML 
and rFIML had identical point estimates. Thus, their MRBs are completely overlapped in this figure. 

As can be seen in Figure 3, the MRBs of loadings from the FIML and rFIML were mainly affected by the 
asymmetry of thresholds. When the thresholds were symmetric, the MRBs from the methods were all within the 
acceptable range (i.e., |RB| < 0.1), regardless of the missing data proportions. However, when the thresholds 
were asymmetric, the MRBs from FIML and rFIML became substantial. In contrast, the MRBs from the methods 
that account for ordinal nature of the data (i.e., WLSMV_PD, pFIML, and lFIML) were all acceptable (only slighty 
affected by missing data rates, |MRB| < 0.1), especially for the loading estimates obtained from pFIML. 

Relative biases in standard error estimates 
As for the standard errors (SEs) for loading estimates, the MRBs from all methods were mostly within the 
acceptable range (|RB| < 0.1) for complete items, so were they for incomplete items with symmetric thresholds. 
Thus, for simplicity, we only presented the results for incomplete items with asymmetric thresholds in Table 3. 
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The other results can be found in the Supporting Information. As shown in Table 3, SEs obtained from FIML were 
always substantively biased in thresholds noninvariant conditions. The SEs from rFIML and WLSMV_PD were 
biased only in conditions where sample sizes were small (n = 300) and missing rates were high (50%). In 
comparison, the SEs from lFIML and pFIML were accurate across all conditions in the current study. 

Table 3. Mean relative biases of standard errors for loadings across incomplete items in group B with 
asymmetric thresholds. 

Estimator DIF_T DIF_L N = 300   N = 600   N = 1000      
Complete 30% 

miss 
50% 
miss 

Complete 30% 
miss 

50% 
miss 

Complete 30% miss 50% 
miss 

FIML 0 0 0.023 0.059 0.076 0.043 0.052 0.090 0.009 0.018 0.020 
  0.2 0 0.115 0.185 0.185 0.105 0.121 0.173 0.039 0.040 0.060 
  0.3 0 0.169 0.188 0.267 0.106 0.107 0.148 0.102 0.106 0.107 
  0.4 0 0.189 0.182 0.229 0.171 0.184 0.162 0.164 0.172 0.187 
  0.5 0 0.222 0.239 0.223 0.141 0.156 0.134 0.117 0.122 0.105 
  0 0.2 –0.030 –

0.009 
–
0.037 

0.036 0.037 0.047 0.014 0.014 0.007 

  0 0.3 –0.045 –
0.043 

–
0.021 

–0.038 –
0.030 

–
0.042 

0.012 0.012 0.002 

  0 0.4 –0.017 0.004 –
0.035 

–0.041 –
0.046 

–
0.026 

–0.032 –0.025 –
0.020 

  0 0.5 –0.041 –
0.027 

–
0.052 

–0.024 –
0.017 

–
0.034 

0.015 0.003 –
0.004 

rFIML 0 0 0.025 0.049 0.052 0.030 0.020 0.041 –0.009 –0.018 –
0.034 

  0.2 0 0.056 0.118 0.118 0.036 0.042 0.085 –0.032 –0.041 –
0.030 

  0.3 0 0.086 0.105 0.177 0.013 0.009 0.045 0.005 0.002 0.000 
  0.4 0 0.084 0.081 0.134 0.054 0.063 0.048 0.043 0.047 0.062 
  0.5 0 0.099 0.121 0.122 0.010 0.026 0.018 –0.015 –0.010 –

0.018 
  0 0.2 0.007 0.022 –

0.014 
0.060 0.051 0.050 0.032 0.023 0.007 

  0 0.3 –0.001 –
0.006 

0.012 –0.010 –
0.007 

–
0.026 

0.035 0.029 0.011 

  0 0.4 0.028 0.045 0.001 –0.012 –
0.022 

–
0.005 

–0.008 –0.005 –
0.005 

  0 0.5 –0.006 0.006 –
0.023 

0.001 0.006 –
0.012 

0.033 0.018 0.008 

W_PD 0 0 –0.052 –
0.067 

–
0.145 

–0.002 –
0.015 

–
0.035 

–0.030 –0.047 –
0.067 

  0.2 0 –0.038 –
0.038 

–
0.111 

–0.005 –
0.016 

–
0.034 

–0.047 –0.066 –
0.062 

  0.3 0 –0.044 –
0.083 

–
0.087 

–0.038 –
0.051 

–
0.057 

–0.017 –0.021 –
0.034 

  0.4 0 –0.048 –
0.075 

–
0.072 

–0.001 0.011 –
0.047 

0.018 0.001 –
0.014 

  0.5 0 –0.043 –
0.066 

–
0.083 

–0.021 –
0.037 

–
0.082 

–0.035 –0.037 –
0.043 

  0 0.2 –0.074 –
0.082 

–
0.142 

0.011 –
0.019 

–
0.025 

0.009 0.006 –
0.026 

  0 0.3 –0.077 –
0.086 

–
0.116 

–0.052 –
0.052 

–
0.078 

0.006 –0.005 –
0.018 



  0 0.4 –0.059 –
0.060 

–
0.107 

–0.060 –
0.071 

–
0.058 

–0.030 –0.029 –
0.040 

  0 0.5 –0.080 –
0.085 

–
0.139 

–0.040 –
0.046 

–
0.076 

0.010 –0.005 –
0.018 

pFIML 0 0 0.005 –
0.020 

–
0.028 

–0.013 –
0.019 

–
0.014 

–0.008 –0.007 –
0.042 

  0.2 0 –0.005 –
0.003 

–
0.041 

–0.026 –
0.018 

–
0.032 

0.001 0.022 0.005 

  0.3 0 –0.013 –
0.021 

–
0.034 

–0.021 0.006 –
0.024 

–0.001 0.014 0.002 

  0.4 0 0.023 –
0.013 

–
0.032 

–0.031 –
0.045 

–
0.040 

–0.001 –0.005 –
0.018 

  0.5 0 –0.002 0.001 –
0.030 

–0.030 –
0.021 

–
0.022 

–0.010 –0.007 0.002 

  0 0.2 –0.015 –
0.028 

0.002 0.010 0.002 –
0.014 

0.012 0.025 –
0.015 

  0 0.3 0.000 0.015 –
0.023 

–0.017 –
0.016 

–
0.005 

–0.001 –0.009 0.004 

  0 0.4 –0.012 –
0.023 

–
0.037 

0.008 –
0.005 

0.021 0.010 –0.011 0.000 

  0 0.5 –0.035 –
0.042 

–
0.027 

–0.010 –
0.014 

–
0.029 

–0.010 –0.006 –
0.020 

lFIML 0 0 0.020 –
0.005 

–
0.020 

0.004 –
0.007 

–
0.008 

0.008 0.006 –
0.031 

  0.2 0 0.010 0.006 –
0.030 

–0.015 –
0.012 

–
0.030 

0.014 0.032 0.020 

  0.3 0 0.002 –
0.010 

–
0.026 

–0.004 0.022 –
0.011 

0.013 0.028 0.005 

  0.4 0 0.032 –
0.001 

–
0.028 

–0.009 –
0.029 

–
0.026 

0.009 0.000 –
0.018 

  0.5 0 0.006 0.007 –
0.025 

–0.020 –
0.011 

–
0.012 

0.005 0.005 0.010 

  0 0.2 –0.012 –
0.022 

–
0.001 

0.014 0.012 –
0.007 

0.017 0.033 –
0.014 

  0 0.3 0.003 0.021 –
0.017 

–0.015 –
0.014 

0.000 0.004 –0.008 0.006 

  0 0.4 –0.014 –
0.027 

–
0.039 

0.011 –
0.003 

0.025 0.015 –0.006 0.006 

  0 0.5 –0.030 –
0.046 

–
0.026 

–0.012 –
0.015 

–
0.028 

–0.004 0.000 –
0.023 

Note: rFIML = robust FIML, W_PD = mean and variance adjusted weight least squared with pairwise deletion, pFIML = FIML 
with a probit link, and lFIML = FIML with a logit link. DIF_T = amount of noninvariance in thresholds, DIF_L = amount of 
noninvariance in loadings. The absolute values above 0.100 were highlighted. 

Empirical example 
An empirical example is also used to further demonstrate the relative performances between the examined 
methods. The data for the empirical example were collected through World Health Organization Quality-of-Life 
Scale (WHOQOL-BREF) by Chen and Yao (2015). For simplicity, we only used the data from the psychological 
domain of WHOQOL-BREF, which is a single-factor subscale with 6 five-point Likert-type scale items. We tested 
ME/I of the scale across gender (158 males and 240 females). Given that the original data were almost 
complete, we imposed missing data on the last three items in the domain for female participants, based on 
participants’ scores on another measure of general quality of life (auxiliary variable). We tried two scenarios: (1) 
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participants with lower general quality of life are more likely to have missing data, and (2) participants with 
higher general quality of life are more likely to have missing data. The missing data rates were set at two levels: 
30% or 50%. 

The results were very similar between the two scenarios. Thus, only the results for the former are presented 
in Table 4. One can notice that the 𝛥𝛥𝜒𝜒2 statistics obtained from WLSMV_PD were quite sensitive to missing 
data. Its values quickly increased (increased by 50%) as the missing data rates increased; In contrast, missing 
data only had trivial influence on the 𝛥𝛥𝜒𝜒2 statistics obtained from the four FIML methods. 

Table 4. 𝛥𝛥𝜒𝜒2test statistics between configural and scalar invariance models across gender on the psychological 
domain subscale of the WHOQOL-BREF. 

  𝛥𝛥𝜒𝜒2 statistics (percentage of inflation versus complete data)  
Methods (df) Complete data 30% missing 50% missing 
FIML (10) 11.151 12.960 (16.2%) 11.472 (2.8%) 
rFIML (10) 10.481 12.211 (16.5%) 10.215(–2.6%) 
WLSMV_PD (22) 21.227 29.550 (39.2%) 32.762 (54.3%) 
lFIML (28) 43.595 47.051 (7.9%) 45.460 (4.2%) 
pFIML (28) 44.161 47.204 (6.8%) 44.930 (1.7%) 

 

Conclusions and discussion 
In this study, we compared five methods that may be used for ME/I testing with ordinal missing data in 
recovering the 𝛥𝛥𝜒𝜒2 test statistic, loading estimates and standard errors for loading estimates. In the following, 
we summarize and discuss the major findings. 

Type I error rate of 𝛥𝛥𝜒𝜒2 tests 
WLSMV_PD could lead to highly inflated type I error rates with the presence of missing data. In contrast, the 
four FIML methods had a much better control of type I error rates. These findings are consistent with previous 
simulation studies focused on continuous missing data and 𝜒𝜒2 (Marsh, 1998; Savalei & Bentler, 2005). There are 
two explanations for the inflated type I error rates for 𝛥𝛥𝜒𝜒2 tests of WLSMV_PD. First, as aforementioned, 
WLSMV treats the thresholds and correlation matrix calculated based on the PD as if they are from complete 
data, so uncertainty in 𝛥𝛥𝜒𝜒2 due to missing data is not accounted for. Second, PD could result in a nonuniform 
sample decrease across summary statistics, which distorts the 𝜒𝜒2 test statistic (Bollen, 1989; Kaplan, 2014). 

Power of the 𝛥𝛥𝜒𝜒2 tests 
As aforementioned, the high power rates associated with WLSMV_PD are not really meaningful. The four FIML 
methods all had sufficient power to detect noninvariance when the sample sizes or the amounts of 
noninvariance were moderate or large. rFIML, pFIML, and lFIML slightly outperformed FIML by having higher 
power to detect noninvariance under some conditions where the amounts of noninvariance are not large. 

Loading estimates 
All methods produced accurate loading estimates when the thresholds were symmetric. However, when the 
thresholds were asymmetric, the loading estimates obtained from FIML/rFIML were always biased, even in 
complete data conditions. In contrast, the loading estimates from WLSMV_PD, lFIML, and pFIML were accurate 
and only slighted affected by missing rates. These results are probably due to the fact that FIML and rFIML do 
not account for the discrete nature of the ordinal data. Similar results have also been found in previous studies 
(e.g., Rhemtulla et al., 2012). 
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Standard errors 
The standard errors obtained from all methods were quite accurate for complete items. However, the methods 
performed differently for incomplete items with asymmetric thresholds; lFIML and pFIML turned out to be the 
two best methods, given that only they produced accurate standard errors regardless of the missing data rates 
and sample sizes. In contrast, the standard errors from FIML, rFIML, and WLSMV_PD were substantively biased 
in conditions where the sample size was small and missing data rates were high. Overall, FIML had the worst 
performance in terms of standard errors given that it does not have any adjustment built in for nonnormality 
due to ordinal data. It produced biased standard errors in almost all conditions where thresholds were 
asymmetric. 

Practical recommendations 
Based on the results of our study, we recommend lFIML, pFIML, and rFIML for the 𝛥𝛥𝜒𝜒2 tests in ME/I testing. 
These methods were capable of controlling the type I error rate at acceptable levels while still maintaining 
sufficient power to detect noninvariance in loadings and thresholds. Comparing to rFIML, iFIM, and pFIML were 
also able to provide accurate standard errors and loading estimates across the conditions, even without 
including auxiliary variables. Thus, when 𝛥𝛥𝜒𝜒2 tests, parameter estimates, and standard errors are jointly 
considered, pFIML and rFIML are the best choices. The only limitation of pFIML and lFIML is that they may not 
run for complicated models (e.g., CFA model with many factors and correlated residuals). In this case, rFIML is a 
good alternative, except that researchers should be cautious about the parameter estimates and standard errors 
produced by rFIML if the indicator distributions are asymmetric. The WLSMV_PD should be avoided if a 
substantial proportion of ordinal missing data exist. 

Limitations and future directions 
Like any other simulation studies, we could not examine all possible conditions of interest to researchers. For 
example, similar to Sass et al. (2014), we limited our simulation to five-point ordinal data. Previous studies have 
shown that reducing the number of categories per item could affect the 𝜒𝜒2 test statistic when treating ordinal 
data as continuous with continuous maximum likelihood estimator (ML) and robust ML (e.g., Rhemtulla 
et al., 2012). It will be interesting to see whether this conclusion applies to 𝛥𝛥𝜒𝜒2 tests. 

Another limitation is that we assume that researchers have the correctly specified configural invariance model. 
Testing configural invariance could be challenging because its 𝜒𝜒2 statistic can be rejected for one of the 
following two reasons, or both: (1) the factor structure is not identical across groups, and (2) model 
misspecification is not relevant to measurement invariance (Jorgensen, Kite, Chen, & Short, 2018). It would be 
worthwhile to examine whether model misspecification could affect the relative performance of the strategies. 

Furthermore, we assume that latent factors are normally distributed, which may not necessarily be true in 
practice. Suh (2015) found that nonnormally distributed latent variables can affect the performance of 𝛥𝛥𝜒𝜒2 tests 
obtained from WLSMV and maximum likelihood methods with probit/logit link in the context of ME/I testing. In 
addition, nonnormality can confound with the missing data mechanism that researchers use to generate missing 
data to affect the performance of the methods. For example, in the current study, we simulated missing data 
such that missing data were more likely to occur with higher auxiliary scores. Graham (2003) considered this 
way of generating missing data as a linear missing at random (MAR). It is also possible to generate missing data 
on both sides of the variables and create nonlinear (or convex) MAR (e.g., imposing missingness to participants 
with high and low auxiliary scores). When data are normally distributed, Graham found that FIML worked fine 
for either linear or nonlinear MAR. However, Savalei and Falk (2014) found that when data were nonnormally 
distributed, the performance of rFIML was sensitive to the different MAR mechanisms. Future research can 
further investigate the joint effects of nonnormally distributed data and different missing data mechanisms on 
ME/I testing. 
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Finally, we found that the performance of lFIML and pFIML was not affected by their limitation of not being able 
to include the auxiliary variable. This finding may not be always true if there is a stronger relationship between 
the auxiliary variable and missingness on the model variables, and/or if there are more incomplete variables in 
the model. Future research is warranted to identify the conditions, if they exist, where the performance of lFIML 
and pFIML may be compromised by this limitation. 
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