756 research outputs found

    Matter Power Spectra in Viable f(R)f(R) Gravity Models with Massive Neutrinos

    Get PDF
    We investigate the matter power spectra in the power law and exponential types of viable f(R)f(R) theories along with massive neutrinos. The enhancement of the matter power spectrum is found to be a generic feature in these models. In particular, we show that in the former type, such as the Starobinsky model, the spectrum is magnified much larger than the latter one, such as the exponential model. A greater scale of the total neutrino mass, Ī£mĪ½\Sigma m_{\nu}, is allowed in the viable f(R)f(R) models than that in the Ī›\LambdaCDM one. We obtain the constraints on the neutrino masses by using the CosmoMC package with the modified MGCAMB. Explicitly, we get $\Sigma m_{\nu} < 0.451 \ (0.214)\ \mathrm{eV}at95thecorrespondingoneforthe at 95% C.L. in the Starobinsky (exponential) model, while the corresponding one for the \LambdaCDMmodelisCDM model is \Sigma m_{\nu} < 0.200\ \mathrm{eV}.Furthermore,bytreatingtheeffectivenumberofneutrinospecies. Furthermore, by treating the effective number of neutrino species N_{\mathrm{eff}}asafreeparameteralongwith as a free parameter along with \Sigma m_{\nu},wefindthat, we find that N_{\mathrm{eff}} = 3.78^{+0.64}_{-0.84} (3.47^{+0.74}_{-0.60})and and \Sigma m_{\nu} = 0.533^{+0.254}_{-0.411}( (< 0.386) \ \mathrm{eV}$ at 95% C.L. in the Starobinsky (exponential) model.Comment: 15 pages, 5 figures, updated version accepted by PL

    Interaction between Thalamus and Hippocampus in Termination of Amygdala-Kindled Seizures in Mice

    Get PDF
    The thalamus and hippocampus have been found both involved in the initiation, propagation, and termination of temporal lobe epilepsy. However, the interaction of these regions during seizures is not clear. The present study is to explore whether some regular patterns exist in their interaction during the termination of seizures. Multichannel in vivo recording techniques were used to record the neural activities from the cornu ammonis 1 (CA1) of hippocampus and mediodorsal thalamus (MDT) in mice. The mice were kindled by electrically stimulating basolateral amygdala neurons, and Racineā€™s rank standard was employed to classify the stage of behavioral responses (stage 1~5). The coupling index and directionality index were used to investigate the synchronization and information flow direction between CA1 and MDT. Two main results were found in this study. (1) High levels of synchronization between the thalamus and hippocampus were observed before the termination of seizures at stage 4~5 but after the termination of seizures at stage 1~2. (2) In the end of seizures at stage 4~5, the information tended to flow from MDT to CA1. Those results indicate that the synchronization and information flow direction between the thalamus and the hippocampus may participate in the termination of seizures

    Multi-beam miniaturized volumetric scanning microscopy with a single 1-dimensional actuation

    Full text link
    Miniaturized optical imaging systems often use a 2-dimensional (2-D) actuator such as a piezoelectric tube or microelectromechanical system actuator for the acquisition of 2-D and higher dimensional images over an areal field of view (FOV). Piezoelectric tubes are the most compact, but usually produce impractical sub-millimetre FOVs and are difficult to fabricate at scale, leading to high costs. Planar piezoelectric bending actuators ('benders') are substantially lower cost and capable of much larger actuations, albeit 1-dimensional (1-D) and traditionally inadequate for 2-D steering tasks. We present a piezoelectric bender imaging system that exploits mechanical motion coupling to produce multi-millimetre scale 2-D scan coverage. Leveraging optical coherence tomography with a long coherence length laser, we further extend the FOV using three depth-multiplexed imaging beams from optical fibres resonating in synchronicity across the width of the bender. Each fibre had a FOV of ~2.1 x 1.5 mm, contributing to a stitched field of ~2.1 x 2.9 mm with a beam resolution of 12.6 um full-width at half-maximum. Imaging of biological samples including stomach tissue, an ant and cell spheroids was performed. This multi-fold improvement in imaging coverage and cost-effectiveness promises to accelerate the advent of piezoelectric scanning in compact devices such as endoscopes for biomedicine, and headsets for augmented/virtual reality and neuroscience

    Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Plant viruses can be employed as versatile vectors for the production of vaccines by expressing immunogenic epitopes on the surface of chimeric viral particles. Although several viruses, including tobacco mosaic virus, potato virus X and cowpea mosaic virus, have been developed as vectors, we aimed to develop a new viral vaccine delivery system, a bamboo mosaic virus (BaMV), that would carry larger transgene loads, and generate better immunity in the target animals with fewer adverse environmental effects.</p> <p>Methods</p> <p>We engineered the BaMV as a vaccine vector expressing the antigenic epitope(s) of the capsid protein VP1 of foot-and-mouth disease virus (FMDV). The recombinant BaMV plasmid (pBVP1) was constructed by replacing DNA encoding the 35 N-terminal amino acid residues of the BaMV coat protein with that encoding 37 amino acid residues (T<sup>128</sup>-N<sup>164</sup>) of FMDV VP1.</p> <p>Results</p> <p>The pBVP1 was able to infect host plants and to generate a chimeric virion BVP1 expressing VP1 epitopes in its coat protein. Inoculation of swine with BVP1 virions resulted in the production of anti-FMDV neutralizing antibodies. Real-time PCR analysis of peripheral blood mononuclear cells from the BVP1-immunized swine revealed that they produced VP1-specific IFN-Ī³. Furthermore, all BVP1-immunized swine were protected against FMDV challenge.</p> <p>Conclusion</p> <p>Chimeric BaMV virions that express partial sequence of FMDV VP1 can effectively induce not only humoral and cell-mediated immune responses but also full protection against FMDV in target animals. This BaMV-based vector technology may be applied to other vaccines that require correct expression of antigens on chimeric viral particles.</p
    • ā€¦
    corecore