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We investigate the matter power spectra in the power law and exponential types of viable f (R) theories 
along with massive neutrinos. The enhancement of the matter power spectrum is found to be a generic 
feature in these models. In particular, we show that in the former type, such as the Starobinsky model, 
the spectrum is magnified much larger than the latter one, such as the exponential model. A greater 
scale of the total neutrino mass, 

∑
mν , is allowed in the viable f (R) models than that in the �CDM one. 

We obtain the constraints on the neutrino masses by using the CosmoMC package with the modified 
MGCAMB. Explicitly, we get 

∑
mν < 0.451 (0.214) eV at 95% C.L. in the Starobinsky (exponential) model, 

while the corresponding one for the �CDM model is 
∑

mν < 0.200 eV. Furthermore, by treating the 
effective number of neutrino species Neff as a free parameter along with 

∑
mν , we find that Neff =

3.78+0.64
−0.84 (3.47+0.74

−0.60) and 
∑

mν = 0.533+0.254
−0.411 (< 0.386) eV at 95% C.L. in the Starobinsky (exponential) 

model.
© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 

(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The observations of the Type-Ia supernovae [1,2] in the last 
decade of the 20th century indicated that our universe is under-
going an accelerating expansion. Since then, the phenomenon has 
been further verified by several succeeding experiments [3–5]. To 
explain this interesting phenomenon, various methods have been 
tried. One of which is to introduce a homogeneous and isotropic 
energy density with negative pressure into the theory of General 
Relativity (GR), so-called “Dark Energy” [6]. The other way is to 
modify Einstein’s gravity theory by extending the Ricci scalar R
in the Einstein–Hilbert action to an arbitrary function f (R) [7,8]. 
Several viable f (R) models have been proposed to satisfy the con-
straints from theoretical considerations as well as cosmological 
observations [8].

On the other hand, the oscillations between the three flavors 
of neutrinos in the standard model of particle physics have been 
detected [9,10], suggesting that either two or three of the active 
neutrinos have tiny masses. Clearly, from the cosmological point 
of view it is necessary to consider the effect of massive neutrinos 
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on the evolution of our universe [11–16]. For example, massive 
neutrinos will suppress the matter power spectrum in the small 
scale [11,12]. In other words, cosmology offers strong constraints 
on the mass scales of neutrinos. However, such cosmological con-
straints are highly model dependent. It is known that the simplest 
model in cosmology, the �CDM model, permits only a small range 
for the sum of the active neutrino masses. For example, the con-
straint from Planck [5] allows 

∑
mν < 0.23 eV at 95% confidence 

level. In the viable f (R) models, their matter power spectra are 
normally larger than that of the �CDM [12,13]. This enhancement 
then can be used to compensate for the suppression due to mas-
sive neutrinos so that the neutrino mass constraint is relaxed to 
a broader window. Recently, 

∑
mν < 0.5 eV has been extracted in 

Refs. [14–16] for the chameleon type of f (R) gravity. In this paper, 
we will examine two typical viable f (R) models with their exact 
forms.

In general, the viable f (R) models can be categorized into 
power-law and exponential types. In this paper, we focus on the 
Starobinsky and exponential gravity models, which belong to these 
two types, respectively. Without loss of generality, we consider 
these f (R) models with one massive neutrino along with the other 
two being massless. Using the modified Code for Anisotropies in 
the Microwave Background (MGCAMB) [17,18] and the CosmoMC 
package [19], we study the constraints on the neutrino masses 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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from the latest cosmological observational data, including those 
of the cosmic microwave background (CMB) from Planck [5] and 
WMAP [20], baryon acoustic oscillation (BAO) from Baryon Oscil-
lation Spectroscopic Survey (BOSS) [21], Type-Ia supernova (SNIa) 
from Supernova Legacy Survey (SNLS) [22], and matter power 
spectrum from Sloan Digital Sky Survey (SDSS) [23] and WiggleZ 
Dark Energy Survey [24]. The constraint on the effective num-
ber of neutrino species, Neff, is also acquired in order to examine 
the non-standard properties of neutrinos. Since MGCAMB uses the 
parametrized framework to include f (R) gravity into CAMB, we 
only consider the linear perturbation and assume that the back-
ground evolution is the same as the �CDM model.

This paper is organized as follows: In Section 2, we first give 
a brief review on the f (R) modification in the linear perturbation 
theory and then show the matter power spectra P (k) in the two 
types of the viable f (R) models. The effect of massive neutrinos is 
examined. In Section 3, we show the results of the constraints on 
massive neutrinos using the CosmoMC package. Finally, we present 
our conclusions in Section 4.

2. Matter power spectrum in f (R) gravity

2.1. f (R) theory

The action of f (R) gravity is given by

S = 1

κ2

∫ √−g f (R)d4x +LM , (1)

where κ2 ≡ 8πG , g is the determinant of metric tensor, f (R) is 
an arbitrary function of Ricci scalar and LM denotes the matter 
Lagrangian density. By varying the action (1) with respect to the 
metric gμν , we obtain

f R Rμν − 1

2
f (R)gμν + (gμν� − ∇μ∇ν) f R = κ2Tμν, (2)

where the subscript “R” denotes the derivative of R , i.e. f R ≡
∂ f /∂ R , � = gμν∇μ∇ν is the d’Alembertian operator, and Tμν is 
the energy–momentum tensor, defined by

Tμν ≡ −2√−g

δSm

δgμν
. (3)

To deal with the dark energy problem, we must check whether 
f (R) gravity satisfies the following viable conditions: (i) f R > 0
for R > R0 ≡ R(z = 0), which keeps the positivity of the modi-
fied Newton constant and avoids the attractive gravitational force; 
(ii) f R R > 0 for R > R0, which guarantees that the mass of 
the scalaron is real defined; (iii) f (R) → R − 2Λ in the high 
redshift region (R � R0), which reproduces the �CDM behav-
ior in the early universe; (iv) a late-time stable solution exists, 
which eliminates the appearance of singularity in the future; and 
(v) it should pass the local gravity tests, including those from 
the equivalence principle and solar system. Several viable f (R)

models with these conditions have been proposed, such as Hu–
Sawicki [25], Starobinsky [26], Tsujikawa [27], exponential [28–31], 
and Appleby–Battye [32,33] gravity models. These models can be 
grouped into power law and exponential types, denoted as Type-I
and -II, respectively [34]. In the following discussion, in order to 
investigate the behaviors of these two types of models, we con-
centrate on the Starobinsky and exponential models, given by

f (R) = R − λRc

[
1 −

(
1 + R2

R2
c

)−n]
(Type-I) (4)

f (R) = R − βRc
(
1 − e−R/Rc

)
(Type-II) (5)

respectively, where Rc represents the characteristic curvature.
2.2. Matter power spectrum

We review the perturbation equations of f (R) gravity in the 
Newtonian gauge and study the effect of f (R) gravity on the 
matter power spectrum with the parametrization used in MG-
CAMB [17,18].

The perturbed FLRW metric in the Newtonian gauge is given by

ds2 = a2(η)
[−(1 + 2Ψ )dη2 + (1 − 2Φ)δi jdxidx j], (6)

where a(η) is the scale factor, η is the conformal time, and Ψ and 
Φ are the scalar perturbations.

It is worth noting that the viable f (R) gravity theory is indis-
tinguishable from the �CDM model at the high-redshift stage. Al-
though the specific distinction between f (R) and �CDM depends 
on the forms of f (R), it always happened later than z = 10, at 
which the non-relativistic matter dominated our universe. There-
fore, we only consider the perturbation equations in the matter 
dominated region. The perturbed energy–momentum tensor is

T 0
0 = −(ρm + δρm), (7)

T 0
i = −(ρm + P M)vm,i, (8)

where vm is the velocity field. By following the similar procedure 
in Ref. [35] with the energy–momentum conservation, δT μ

ν;μ = 0, 
we can derive the perturbation equations in f (R) theory:

k2

a2
Φ + 3H(HΨ + Φ̇)

= 1

2 f R

[
3Hδ ḟ R −

(
3Ḣ + 3H2 − k2

a2

)
δ f R

− 3H ḟ RΨ − 3 ḟ R(HΨ + Φ̇) − κ2δρm

]
, (9)

δ f̈ R + 3Hδ ḟ R +
(

k2

a2
− R

3

)
δ f R

= κ2

3
δρm + ḟ R(3HΨ + Ψ̇ + 3Φ̇)

+ (2 f̈ R + 3H ḟ R)Ψ − 1

3
f RδR, (10)

Ψ − Φ = −δ f R

f R
, (11)

δρ̇m + 3Hδρm = ρm

(
3Φ̇ − k2

a
vm

)
, (12)

v̇m + H vm = 1

a
Ψ, (13)

where the “dot” denotes the time derivative and k is a comoving 
wavenumber under the Fourier transform. Besides, it is convenient 
to use the gauge-invariant matter density perturbation δm , defined 
by

δm ≡ δρm

ρm
+ 3H v, v ≡ avm. (14)

From Eqs. (9)–(14) with the sub-horizon limit (k2 � a2 H2), the 
relations between the metric potential and the perturbation of the 
matter density are given by

k2

a2
Ψ = −4πGeff(k,a)ρmδm, (15)

Φ = γ (k,a), (16)

Ψ
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Fig. 1. Differences of the matter power spectra between f (R) and �CDM models, where the left and right panels correspond to the Starobinsky (n = 2) and exponential 
models, respectively, and the gray solid line represents P (k) in the �CDM model as the scale independent baseline.

Fig. 2. Matter power spectra P (k) of the Starobinsky (left with fixing n = 2) and exponential (right) models, where the dotted lines represent P (k) in the �CDM model.
where

Geff = G

f R

1 + 4 k2

a2
f R R
f R

1 + 3 k2

a2
f R R
f R

, (17)

γ = 1 + 2 k2

a2
f R R
f R

1 + 4 k2

a2
f R R
f R

. (18)

Eqs. (15) and (16) are the parametrizations used in MGCAMB to in-
corporate f (R) gravity. In other words, MGCAMB modifies the lin-
ear perturbation to include the effect of f (R) that has the �CDM 
limit.

In MGCAMB, the f (R) gravity effect is introduced by Bertschin-
ger and Zukin (BZ) in Ref. [36] through the form

Geff

G
= 1

1 − 1.4 × 10−8|λ1|2a3

1 + 4
3 λ2

1k2a4

1 + λ2
1k2a4

(19)

where λ1 is defined by the Compton wavelength in units of the 
Hubble scale [18,36],

λ2
1 = B0

2H2
0

, (20)

where

B0 ≡ f R R

f

dR

d ln a

(
d ln H

d ln a

)−1∣∣∣∣ . (21)

R a=1
However, comparing Eq. (17) to (19), the BZ approach describes 
the f (R) effect as a function of time, indicating f R R ∝ a6 in the 
high redshift regime ( f R ∼ 1). This approach can only be used in 
the Starobinsky model with n = 1 in the matter dominated era, but 
not in the Starobinsky (n 
= 1) and exponential models since they 
deviate from the �CDM model as f R R ∝ (Rc/R)2n and e−R/Rc , re-
spectively. Instead of the BZ approach used in Refs. [15,18], we 
further modify MGCAMB and take the exact f (R) form in Eq. (17)
to represent the matter power spectrum in f (R) gravity. Note that 
in Refs. [14,16] the authors have done the analysis by using the full 
linear perturbation equations of f (R) gravity [37]. Through the vi-
able condition (iii), the characteristic curvature Rc is defined by the 
dark energy density ρΛ and the parameter λ (β), in the Starobin-
sky (exponential) model, given by

f (R)
R�R0= R − λRc(βRc) � R − 2Λ ⇒ Rc � 2Λ

λ(β)
. (22)

Within this framework, we conduct the program of the CosmoMC 
package with MGCAMB to perform our calculations.

Instead of investigating the numerical result from MGCAMB di-
rectly, we can figure out the effect of f (R) gravity on the matter 
power spectrum, P (k) ∼ 〈δ2

m〉, based on the equation,

δ̈m + 2H δ̇m − 4πGeffρmδm = 0, (23)

derived from Eqs. (9)–(14). If we set f (R) = R − 2Λ and Geff = G , 
we recover the �CDM case. According to Eq. (23) and the defini-
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tion of Geff in Eq. (17), the deviation of δm from the �CDM model 
can be estimated by the separation of variables,

Geff = Gμ1(a)μ2(a,k), (24)

where μ1 = f −1
R and μ2 = (1 + 4k2 f R R/a2 f R)/(1 + 3k2 f R R/a2 f R). 

For the Starobinsky and exponential models, their first-order 
derivatives,

f (s)
R = 1 − 2nλ

R

Rc

(
1 + R2

R2
c

)−(n+1)

, (25)

f (exp)
R = 1 − βe−R/Rc , (26)

are both smaller than unity, so that μ1,2 are greater than unity. 
The first two viable conditions, f R > 0 and f R R > 0, guarantee 
that the numerator of μ2 is larger than its denominator. Further-
more, μ2 is enhanced by a large wavenumber k, corresponding to 
the matter power spectrum in the small scale. In all, the matter 
power spectra of the viable f (R) gravity theories are always larger 
than that of the �CDM model as explicitly shown in Fig. 1, where 
the density of dark energy is fixed to be ΩDE ∼ 73% and neutrino 
masses are taken to be zero.

The deviation between the Starobinsky (exponential) and
�CDM models is proportional to (Rc/R)2n (e−R/Rc ). If the dark 
energy density ρΛ is fixed at the present time (z = 0), the char-
acteristic curvature Rc is inverse proportional to the model pa-
rameter, Rc ∼ 2Λ/λ(β), denoting that a smaller model parameter 
corresponds to a larger deviation for the matter power spectrum. 
As a result, we consider the model parameter space close to the 
lower bound of the viable condition (λ, β ≥ 1 and n ≥ 2) in the 
following calculations. In Fig. 2, we show the matter power spec-
tra in the Starobinsky (n = 2) and exponential models, where the 
�CDM result is also given. As indicated above, a large enhance-
ment of f (R) gravity occurs at the large wavenumber k. There 
is an interesting phenomenon: the magnification of P (k) in the 
Starobinsky model is more greater than that in the exponential one 
within the same allowed viable model parameter (e.g., λ = β and 
Rstar

c = Rexp
c ). Since there is an exponential decay in the Type-II

models, it converges toward the �CDM result much faster than 
that in the Type-I ones as the curvature increases. Accordingly, it 
is possible to exist a much larger enhancement the Type-I model 
than that in the Type-II one.

To study the effect of massive neutrinos on the matter power 
spectrum, we first use the relation between the contributions of 
massive neutrinos to the total energy density, Ων , and the total 
mass, 

∑
mν , in unit of eV, given by

Ων �
∑

mν

94h2 eV
, (27)

where h is the reduced Hubble constant. The upper value at 95% 
C.L. for the total neutrino mass constrained by the Planck data in 
the �CDM model [5], 

∑
mν < 0.23 eV, leads to Ων ≤ 5 × 10−3. 

Although it is a rather small ratio to the total energy density, its 
effect on the matter power spectrum is still detectable, as men-
tioned in Section 1. As demonstrated in Fig. 3, we see that the free 
streaming massive neutrino suppresses the growth of P (k) in the 
subhorizon scale [11]. This effect of massive neutrinos on the mat-
ter power spectrum is opposite to that of f (R) models [12]. As a 
result, the Type-I f (R) models would allow a higher scale for the 
total neutrino mass than Type-II.

3. Constraints from cosmological observations

We now perform the numerical simulations for the viable f (R)

models by using the CosmoMC package with some massive neutri-
nos and the latest cosmological data. The dataset is as follows: the 
Fig. 3. Matter power spectrum P (k) in the �CDM model with ∑mν = 0 (solid line), 
0.3 (dashed line) and 0.6 (dotted line) eV.

Table 1
List of priors for parameters.

Parameters Priors

Starobinsky model 1 < λ < 7, n = 2
Exponential model 1 < β < 4
Baryon density 5 × 10−3 < Ωbh2 < 0.1
CDM density 10−3 < Ωch2 < 0.99
Neutrino mass 0 <

∑
mν < 1 eV

Neutrino number (fixed) Neff = 3.046
Neutrino number (varied) 2 < Neff < 6
Spectral index 0.9 < ns < 1.1
Reionization optical depth 0.01 < τ < 0.8

CMB data from Planck with both low-l (l < 50) and high-l (l ≥ 50) 
parts and WMAP with only the low-l one; the BAO data from BOSS 
DR11; the matter power spectral data from SDSS DR4 and Wig-
gleZ Dark Energy Survey; and the SNIa data from SNLS. With this 
dataset, we explore the constraints on the Cold Dark Matter den-
sity, Ωch2, and the sum of the active neutrino masses, 

∑
mν , in 

the two viable f (R) models. In Table 1, we list the cosmological 
parameters in our analysis.

In Fig. 4, we illustrate the constraining contours of 
∑

mν and 
Ωch2 with the assumption of only one massive neutrino. Our re-
sults are summarized in Table 2. From Fig. 4 and Table 2, we see 
that 

∑
mν < 0.451 eV (95% C.L.) in the Starobinsky model, which 

is close to the upper bound given in Ref. [15], while the expo-
nential model leaves the massive neutrino a rather small space, ∑

mν < 0.214 eV (95% C.L.), which is very close to that of the 
�CDM model, 

∑
mν < 0.200 eV (95% C.L.). Clearly, the behavior 

the Type-II viable f (R) models is barely distinguishable from the 
�CDM one.

In addition, we can examine the effective number of neutrino 
species, Neff, to account for the neutrino-like relativistic degrees of 
freedom, defined by

ρradiation ≡ ργ + ρν =
[

1 + 7

8

(
4

11

) 4
3

Neff

]
ργ , (28)

where ργ is the energy density of photon, 7/8 comes from the 
Fermi–Dirac distribution since neutrinos are fermions, and 4/11 is 
due to the ratio of the neutrino to photon temperature. The effect 
of Neff is mostly on the epoch of the matter–radiation equality and 
the expansion rate as well as the CMB power spectrum.

Our results are shown in Fig. 5 and Table 3. The best-fit value 
of Neff is 3.78 in the Starobinsky model, which is higher than the 
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Fig. 4. Contour plots of ∑mν in eV and Ωch2 for the Starobinsky (left) and exponential (right) gravity models, where the inner and outer curves represent 1σ and 2σ
confidence levels, respectively.

Table 2
List of ∑mν and Ωch2 with 95% C.L. in the �CDM, Starobinsky and exponential models.

f (R) model
∑

mν Ωbh2 Ωch2 ns τ

�CDM <0.200 eV 2.22+0.04
−0.06 × 10−2 0.117+0.004

−0.002 0.963+0.010
−0.011 0.092 ± 0.025

Starobinsky 0.248+0.203
−0.232 eV 2.25+0.04

−0.05 × 10−2 0.114+0.004
−0.002 0.971+0.09

−0.13 0.097+0.021
−0.030

Exponential <0.214 eV 2.22 ± 0.05 × 10−2 0.118 ± 0.03 0.964+0.009
−0.011 0.092+0.026

−0.025

Fig. 5. Contours of Neff and
∑

mν in the Starobinsky (left) and exponential (right) models with 1σ and 2σ confidence levels, respectively.

Table 3
List of Neff , 

∑
mν and Ωch2 with 95% confidence levels in the �CDM, Starobinsky, and exponential models.

Neff
∑

mν Ωbh2 Ωch2 ns τ

�CDM 3.47+0.82
−0.47 <0.351 eV 2.24+0.06

−0.05 × 10−2 0.125+0.012
−0.008 0.974+0.028

−0.015 0.086+0.038
−0.016

Starobinsky 3.78+0.64
−0.84 0.533+0.254

−0.411 eV 2.28 ± 0.06 × 10−2 0.124+0.010
−0.011 0.989+0.031

−0.026 0.099+0.030
−0.029

Exponential 3.47+0.74
−0.60 <0.386 eV 2.26+0.04

−0.07 × 10−2 0.124+0.011
−0.009 0.978+0.023

−0.022 0.092+0.032
−0.024
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corresponding one of 3.47 in both �CDM and exponential mod-
els. This infers that the Starobinsky model allows more relativistic 
species than the other two models. However, at 95% C.L., the three 
models admit approximately the same range for Neff . On the other 
hand, the total neutrino mass in the two viable f (R) models as 
well and the �CDM one increases when Neff is treated as a free 
parameter.

4. Conclusions

We have studied the effect of massive neutrinos in the two 
types of viable f (R) gravity theories, the Starobinsky and expo-
nential models, by using the CosmoMC package with the modified 
MGCAMB. We have considered the linear perturbations in these 
models by assuming that the background evolutions are the same 
as the �CDM. The enhancement of the matter power spectrum 
has been found to be a generic feature in the viable f (R) gravity 
theory. However, the biggest magnifications of the matter power 
spectra in the Type-I f (R) models are more significant than those 
in the Type-II ones. With an increasing curvature, the results in 
the Type-I models approach to the �CDM as an inverse power 
law, while those in the Type-II models as an exponential decay. 
Clearly, the Type-I viable f (R) models allow larger mass scales for 
massive neutrinos than those in Type-II since massive neutrinos 
suppress the matter power spectra. As a result, the modified f (R)

gravity theory would be used to compensate the suppression from 
the effect of massive neutrinos. If the three neutrinos are in a large 
mass scale, the Type-I viable f (R) theory, such as the Starobinsky 
model, is favored.

Our investigation has shown that the allowed neutrino mass 
scale is further released when Neff is considered as a free pa-
rameter. Moreover, the best-fit value of Neff has been found to 
be 3.78 in the Starobinsky model, which is greater than 3.47 in 
the �CDM and exponential models. Clearly, the Starobinsky model 
leaves more room for a dark sector or a sterile neutrino in the uni-
verse.
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