3,310 research outputs found

    Initial value problem for fractional evolution equations

    Get PDF

    Challenges of Primary Frequency Control and Benefits of Primary Frequency Response Support from Electric Vehicles

    Get PDF
    As the integration of wind generation displaces conventional plants, system inertia provided by rotating mass declines, causing concerns over system frequency stability. This paper implements an advanced stochastic scheduling model with inertia-dependent fast frequency response requirements to investigate the challenges on the primary frequency control in the future Great Britain electricity system. The results suggest that the required volume and the associated cost of primary frequency response increase significantly along with the increased capacity of wind plants. Alternative measures (e.g. electric vehicles) have been proposed to alleviate these concerns. Therefore, this paper also analyses the benefits of primary frequency response support from electric vehicles in reducing system operation cost, wind curtailment and carbon emissions

    Building Detection using Aerial Images and Digital Surface Models

    Get PDF
    In this paper a method for building detection in aerial images based on variational inference of logistic regression is proposed. It consists of three steps. In order to characterize the appearances of buildings in aerial images, an effective bag-of-Words (BoW) method is applied for feature extraction in the first step. In the second step, a classifier of logistic regression is learned using these local features. The logistic regression can be trained using different methods. In this paper we adopt a fully Bayesian treatment for learning the classifier, which has a number of obvious advantages over other learning methods. Due to the presence of hyper prior in the probabilistic model of logistic regression, approximate inference methods have to be applied for prediction. In order to speed up the inference, a variational inference method based on mean field instead of stochastic approximation such as Markov Chain Monte Carlo is applied. After the prediction, a probabilistic map is obtained. In the third step, a fully connected conditional random field model is formulated and the probabilistic map is used as the data term in the model. A mean field inference is utilized in order to obtain a binary building mask. A benchmark data set consisting of aerial images and digital surfaced model (DSM) released by ISPRS for 2D semantic labeling is used for performance evaluation. The results demonstrate the effectiveness of the proposed method

    Human Sensing via Passive Spectrum Monitoring

    Full text link
    Human sensing is significantly improving our lifestyle in many fields such as elderly healthcare and public safety. Research has demonstrated that human activity can alter the passive radio frequency (PRF) spectrum, which represents the passive reception of RF signals in the surrounding environment without actively transmitting a target signal. This paper proposes a novel passive human sensing method that utilizes PRF spectrum alteration as a biometrics modality for human authentication, localization, and activity recognition. The proposed method uses software-defined radio (SDR) technology to acquire the PRF in the frequency band sensitive to human signature. Additionally, the PRF spectrum signatures are classified and regressed by five machine learning (ML) algorithms based on different human sensing tasks. The proposed Sensing Humans among Passive Radio Frequency (SHAPR) method was tested in several environments and scenarios, including a laboratory, a living room, a classroom, and a vehicle, to verify its extensiveness. The experimental results show that the SHAPR method achieved more than 95% accuracy in the four scenarios for the three human sensing tasks, with a localization error of less than 0.8 m. These results indicate that the SHAPR technique can be considered a new human signature modality with high accuracy, robustness, and general applicability

    Do We Blame it on the Machine? Task Outcome and Agency Attribution in Human-Technology Collaboration

    Get PDF
    With the growing functionality and capability of technology in human-technology interaction, humans are no longer the only autonomous entity. Automated machines increasingly play the role of agentic teammates, and through this process, human agency and machine agency are constructed and negotiated. Previous research on “Computers are Social Actors (CASA)” and self-serving bias suggest that humans might attribute more technology agency and less human agency when the interaction outcome is undesirable, and vice versa. We conducted an experiment to test this proposition by manipulating task outcome of a game co-played by a user and a smartphone app, and found partially contradictory results. Further, user characteristics, sociability in particular, moderated the effect of task outcome on agency attribution, and affected user experience and behavioral intention. Such findings suggest a complex mechanism of agency attribution in human-technology collaboration, which has important implications for emerging socio-ethical and socio-technical concerns surrounding intelligent technology

    Development and application of titanium alloy casting technology in China

    Get PDF
    The development and research of casting titanium alloy and its casting technology, especially its application in aeronautical industry in China are presented. The technology of moulding, melting and casting of titanium alloy, casting quality control are introduced. The existing problem and development trend in titanium alloy casting technology are also discussed
    corecore