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Abstract

This article is concerned with the existence of mild solutions to the initial value
problem for a class of semilinear evolution equations with fractional order. New
existence theorems are obtained by means of fixed point theorem for condensing
maps. The results extend some related results in this direction.
Mathematics Subject Classification (2000): 34A12; 35F25.

Keywords: fractional evolution equations, mild solutions, initial value problem, con-
densing maps, measure of noncompactness

1 Introduction
This article deal with the existence of mild solutions to the initial value problem (IVP)

for a class of semilinear evolution equations with fractional order of the form{
Dβu(t) + Au(t) = f (t, u(t)), t ∈ J,
u(0) = u0,

(1:1)

where Db is the standard Caputo’s derivative of order 0 <b < 1, J = [0, 1],

A : D(A) ⊂ X → X is a linear closed densely defined operator, -A is the infinitesimal

generator of a C0-semigroup T(t)(t ≥ 0) of operators on X, f : J × X → X is continuous

and u0 is an element of the Banach space X.

Differential equations of fractional order have recently proved to be valuable tools in

the modeling of many phenomena in various fields of science and engineering. Indeed,

we can find numerous applications in viscoelasticity, electrochemistry, control, porous

media, electromagnetism, etc. (see [1-5]). There has been a significant development in

the study of fractional differential equations and inclusions in recent years; see the

monograph of Kilbas [6], Lakshmikantham [7], Podlubny [4], and the survey by Agar-

wal [8]. For some recent contributions on fractional differential equations, see [9-15]

and the references therein.

Very recently some basic theory for the initial value problems of fractional differen-

tial equations involving Riemann-Liouville differential operator of order 0 <q ≤ 1 has

been discussed by Lakshmikantham and Vatsala [16-18].

Among the previous research, only a few be concerned with evolution equations of

fractional order under noncompactness conditions. for some recent and deeper results

on fractional differential equations under noncompactness conditions, see [19,20]. In

this article, we prove the existence of mild solutions for the IVP (1.1) under
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noncompactness measure condition of nonlinear term f. For the details of the defini-

tion and properties of the measure of noncompactness, see [21].

The rest of this article is organized as follows: In Section 2, we recall briefly some

basic definitions, lemmas and preliminary facts which are used throughout this article.

The existence theorems of mild solutions for the IVP (1.1) and their proofs are

arranged in Section 3.

2 Preliminaries
In this section, we introduce preliminary facts which are used in what follows.

Let
(
B (X) , ‖·‖B(X)

)
be the Banach space of all linear bounded operators on X.

Throughout this article, let -A be the infinitesimal generators of a C0-semigroup T(t)(t

≥ 0) of bounded linear operators on X. Clearly

M := sup
t∈J

∥∥T(t)∥∥B(X) < ∞. (2:1)

Let P be a cone in X which define a partial ordering in X by x ≤ y if and only if y -

x Î P. If x ≤ y and x ≠ y, we write x <y.

P is said to be normal if there exists a positive constant N such that θ ≤ x ≤ y implies

∥x∥ ≤ N∥y∥, where θ denotes the zero element of X.

Denote by C (J,X) the Banach space of all continuous functions x : J → X with

norm ‖x‖C = sup
t∈J

∥∥x(t)∥∥ . Set PC :=
{
x ∈ C(J,X) : x(t) ≥ θ for t ∈ J

}
, then PC is a cone

in space C (J,X) , and so, C (J,X) is partially ordered by PC : u ≤ v if and only if v - u

Î PC, i.e., u(t) ≤ v(t) for t Î J.

Now let Fb be the Mainardi function:

�β(z) =
+∞∑
n=0

(−z)n

n!� (−βn + 1 − β)
. (2:2)

then

�β(t) ≥ 0 for all t > 0; (2:3)

∞∫
0

�β(t)dt = 1; (2:4)

∞∫
0

tη�β(t)dt =
�(1 + η)
�(1 + βη)

, η ∈ [0, 1]. (2:5)

For the details we refer to [20-22].

We set

Sβ(t) =

∞∫
0

�β(r)T
(
rtβ

)
dr, (2:6)

Pβ(t) =

∞∫
0

βr�β(r)T
(
rtβ

)
dr. (2:7)
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Then we have the following result.

Lemma 2.1 [23,24]. Let Sβ and Pβ be the operators defined, respectively, by (2.6)

and (2.7). Then

(i)
∥∥Sβ(t)u

∥∥ ≤ M ‖u‖ ; ∥∥Pβ(t)u
∥∥ ≤ M

β

�(β + 1)
‖u‖ for all u ∈ X and t ≥ 0.

(ii) The operators Sβ(t)(t ≥ 0) and Pβ(t)(t ≥ 0) are strongly continuous.

Definition 2.2. A C0-semigroup R(t)(t ≥ 0) in X is said to be positive, if order

inequality R(t)x ≥ θ holds for each x ≥ θ, x ∈ X and t ≥ 0.

Remark 2.3. According to (2.6), (2.7) and Definition 2.2, if T(t)(t ≥ 0) is positive,

then Sβ(t) and Pβ(t) are also positive.

Definition 2.4 [25,26]. Let Sβ and Pβ be operators defined, respectively, by (2.6)

and (2.7).

Then a continuous function u : J → X satisfying for any t Î [0, 1] the equation

u(t) = Sβ(t)u0 +

t∫
0

(t − s)β−1Pβ(t − s)f (s, u(s))ds, (2:8)

is called a mild solution of the problem (1.1).

Lemma 2.5. Let T(t)(t ≥ 0) is positive, Sβ and Pβ be the operators defined, respec-

tively, by (2.6) and (2.7), v, w ∈ C(J,X) , f ∈ C (J × X,X) and

(1) v(t) ≤ Sβ(t)v(0) +
t∫
0
(t − s)β−1Pβ(t − s)f (s, v(s))ds,

(2) w(t) ≥ Sβ(t)w(0) +

t∫
0

(t − s)β−1Pβ(t − s)f (s,w(s))ds, 0 ≤ t ≤ 1, , 0 ≤ t ≤ 1,

one of the foregoing inequalities being strict. Suppose further that f(t, x) is nonde-

creasing in x for each t and

v(0) < w(0). (2:9)

Then we have

v(t) < w(t), 0 ≤ t ≤ 1. (2:10)

Proof. Suppose that the conclusion (2.10) is not true. Then, because of the continu-

ity of the functions involved and (2.9), it follows that there exists a t1 such that 0 <t1 ≤

1 and

v(t1) = w(t1), v(t) < w(t), 0 < t < t1. (2:11)

Since v(0) <w(0) and Sβ(t) is positive, so

Sβ(t)v(0) ≤ Sβ(t)w(0), 0 ≤ t ≤ t1. (2:12)

Similarly, using the nondecreasing nature of f and (2.11), we obtain

Pβ (t1 − s) f (s, v(s)) ≤ Pβ(t1 − s)f (s,w(s)), 0 ≤ s ≤ t1. (2:13)
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Without loss of generality, let us suppose that the inequality (2) is strict, according to

(2.12) and (2.13) we get

w(t1) > Sβ(t1)w(0) +

t1∫
0

(t1 − s)β−1Pβ(t1 − s)f (s,w(s))ds

≥ Sβ(t1)v(0) +

t1∫
0

(t1 − s)β−1Pβ(t1 − s)f (s, v(s))ds

≥ v(t1),

which is a contradiction in view of (2.11). Hence the conclusion (2.10) is valid and

the proof is complete.

Let a(·) denotes the Kuratowski measure of noncompactness of the bounded set. For

any B ⊂ C(J,X) and t Î J, set B(t) = {u(t) : u ∈ B} ⊂ X . If B is bounded in C (J,X) ,

then B(t) is bounded in X, and a(B(t)) ≤ a(B).
Lemma 2.6 [27]. Let D ⊂ X be bounded. Then there exists a countable set D0 ⊂ D,

such that a(D) ≤ 2a(D0).

Lemma 2.7 [28]. Let H ⊂ C(J,X) is bounded and equicontinuous. Then

α(H) = α(H(J)) = max
t∈J

α(H(t)).

Lemma 2.8 [28]. Let H be a countable set of strongly measurable function x : J → X
such that there exists an g Î L(J, [0, +∞)) such that ∥x(t)∥ ≤ g(t) a.e. t Î J for all x Î
H. Then a(H(t)) Î L(J,[0,+∞)) and

α

⎛
⎝
⎧⎨
⎩
∫
J

x(t)dt : x ∈ H

⎫⎬
⎭
⎞
⎠ ≤ 2

∫
J

α(H(t))dt.

Lemma 2.9 [29]. Suppose b ≥ 0, q > 0 and a(t) is a nonnegative function locally

integrable on 0 ≤ t <T (some T ≤ ∞), and suppose x(t) is nonnegative and locally

integrable on 0 ≤ t <T with

x(t) ≤ a(t) + b

t∫
0

(t − s)q−1x(s)ds

on this interval; then

x(t) ≤ a(t) +

t∫
0

[ ∞∑
n=1

(b�(q))n

�(nq)
(t − s)nq−1a(s)

]
ds, 0 ≤ t < T.

Lemma 2.10 [21]. Let X be a Banach space and Ω is a bounded convex closed set in

X, Q : Ω ® Ω be condensing. Then Q has a fixed point in Ω.

3 Main Results
Theorem 3.1. Let X be an ordered Banach space, whose positive cone P is normal,

f ∈ C (J × X,X) . Suppose that the following conditions are satisfied:
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(H1) T(t)(t ≥ 0) is equicontinuous, i.e., T(t) is continuous in the uniform operator

topology for t > 0.

(H2) There exists a constant L > 0, 4ML
�(β+1) < 1 such that

α(f (t,D)) ≤ Lα(D), for any t ∈ J and D ⊂ Br,

where Br =
{
u ∈ C(J,X)

}
: ‖u‖C ≤ r

}
. .

(H3) There exists a function μ(t) Î L∞(J,ℝ+) such that∥∥f (t, u)∥∥ ≤ μ(t), for all t ∈ J and u ∈ X.

Then the IVP (1.1) has a mild solution in C (J,X) .

Proof. Let

� =
{
u ∈ C(J,X) : ‖u‖C ≤ R

}
,

where

R > M
(

‖u0‖ +
‖μ‖L∞(J,R+)

�(β + 1)

)
.

Define the operator Q : � → C(J,X) by

(Qu)(t) − Sβ(t)u0 +

t∫
0

(t − s)β−1Pβ(t − s)f (s, u(s))ds. (3:1)

It is obvious that the mild solution of the IVP (1.1) is equivalent to the fixed point of

Q. Then we proceed in two steps.

Step 1. Q : Ω ® Ω.

In view of (2.1), (H3) and Lemma 2.1, we have for u Î Ω and t Î J,

∥∥(Qu)(t)
∥∥ ≤ ∥∥Sβ(t)u0

∥∥ +

∥∥∥∥∥∥
t∫

0

(t − s)β−1Pβ(t − s)f (s, u(s))ds

∥∥∥∥∥∥
≤ M ‖u0‖ +

Mβ

�(β + 1)

t∫
0

(t − s)β−1μ(s)ds

≤ M
(

‖u0‖ +
‖μ‖L∞(J,R+)

�(β + 1)

)
≤ R,

that is

‖Qu‖C ≤ R.

So Q: Ω ® Ω.

Step 2. Q : Ω ® Ω is condensing.

First, by using analog argument performed in [30], one can prove Q(Ω) is equicon-

tinuous, we omit it here.

For any B ⊂ Ω, by Lemma 2.6, there exists a countable set B1 = {un} ⊂ B, such that

α(Q(B)) ≤ 2α (Q (B1)) . (3:2)
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Since Q(B1) ⊂ Q(Ω) is equicontinuous, in view of Lemma 2.7

α
(
Q(B1)

)
= max

t∈J
α
(
Q(B1)(t)

)
. (3:3)

For t Î J, according to Lemma 2.1, Lemma 2.8 and (H2), we have

α
(
Q(B1)(t)

)
= α

⎛
⎝
⎧⎨
⎩Sβ(t)u0 +

t∫
0

(t − s)β−1Pβ(t − s)f (s, un(s))ds

⎫⎬
⎭
⎞
⎠

≤ α

⎛
⎝
⎧⎨
⎩

t∫
0

(t − s)β−1Pβ(t − s)f (s, un(s))ds

⎫⎬
⎭
⎞
⎠

≤ 2

t∫
0

(t − s)β−1α
({
Pβ(t − s)f (s, un(s))

})
ds

≤ 2Mβ

�(β + 1)

t∫
0

(t − s)β−1α
(
f (s,B1(s))

)
ds

≤ 2MLβ
�(β + 1)

α(B)

t∫
0

(t − s)β−1ds

≤ 2ML
�(β + 1)

α(B).

So, we can conclude that

α
(
Q(B1)(t)

) ≤ 2ML

�(β + 1)
α(B). (3:4)

Thus, a combination of (3.2), (3.3), and (3.4) gives that

α(Q(B)) ≤ 4ML
�(β + 1)

α(B). (3:5)

From (H2), Q : Ω ® Ω is condensing.

Finally, Lemma 2.10 guarantees that Q has a fixed point in Ω.

Now we discuss the existence of minimal and maximal mild solutions for IVP (1.1).

Theorem 3.2. Let X be an ordered Banach space, whose positive cone P is normal

with normal constant N, T(t)x >θ holds for each x >θ, x ∈ X and t ≥ 0,

f ∈ C (J × X,X) . If conditions (H1)-(H3) and the following condition are satisfied:

(H4) t Î J, u1 ≤ u2 implies f(t,u1) ≤ f(t,u2).

Then the IVP (1.1) has minimal and maximal mild solutions in C (J,X) .

Proof. Let

θ < · · · < εn < εn−1 < · · · ε2 < ε1, n = 1, 2, ...,

where

‖εn‖ < δ and lim
n→∞ ‖εn‖ = 0. (3:6)

Set

�1 =
{
u ∈ C(J,X) : ‖u‖C ≤ R1

}
,
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where

R1 > M
[
‖u0‖ + δ +

‖μ‖L∞(J,R+) + δ

�(β + 1)

]
.

We consider the following fractional evolution equation{
Dβu(t) + Au(t) = f (t, u(t)) + εn, t ∈ J,
u(0) = u0 + εn,

(3:7)

by Lemma 2.4, if u(t) is a mild solution of IVP (3.7), then

u(t) = Sβ(t) (u0 + εn) +

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s)) + εn

]
ds. (3:8)

It follows from (3.6), (3.8), (H3) and Lemma 2.1 that

∥∥u(t)∥∥ ≤ M (‖u0‖ + δ) +
Mβ

(‖μ‖L∞(J,R+) + δ
)

�(β + 1)

t∫
0

(t − s)β−1ds

≤ M (‖u0‖ + δ) +
Mβ

(‖μ‖L∞(J,R+) + δ
)

�(β + 1)

< R1.

Thus

‖u‖C ≤ R1.

From the proof of Theorem 3.1, we know that the IVP (3.7) has a mild solution u

(t,εn) in Ω1.

By (3.8), we know that

u(t, εn) = Sβ(t)u(0, εn) +

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s, εn)) + εn

]
ds, (3:9)

where

u(0, εn) = u0 + εn.

This yields

u(0, εn) < u(0, εn−1), n = 2, 3, ....

u(t, ε2) = Sβ(t)u(0, ε2) +

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s, ε2)) + ε2

]
ds,

u(t, ε1) = Sβ(t)u(0, ε1) +

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s, ε1)) + ε1

]
ds

> Sβ(t)u(0, ε1) +

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s, ε1)) + ε2

]
ds.
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Combining (H4) with Lemma 2.5, we have

u(t, ε2) < u(t, ε1), t ∈ J.

Hence

· · · < u(t, εn) < u(t, εn−1) < · · · < u(t, ε2) < u(t, ε1). (3:10)

Let

V(t) =
{
u(t, εn) : n = 1, 2, ...

}
, ϕ(t) = α(V(t)), t ∈ J.

From (3.9), (H2), Lemmas 2.1 and 2.8, we have

ϕ(t) = α(V(t))

= α

⎛
⎝
⎧⎨
⎩Sβ(t)u(0, εn) +

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s, εn)) + εn

]
ds

⎫⎬
⎭
⎞
⎠

≤ α

⎛
⎝
⎧⎨
⎩

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s, εn)) + εn

]
ds

⎫⎬
⎭
⎞
⎠

< 2

t∫
0

α
({

(t − s)β−1Pβ(t − s)
[
f (s, u(s, εn)) + εn

]})
ds

≤ 2Mβ

�(β + 1)

t∫
0

(t − s)β−1
α(f (s,V(s)))ds

≤ 2Mβ

�(β + 1)

t∫
0

(t − s)β−1
ϕ(s)ds.

This together with Lemma 2.9, we obtain that �(t) ≡ 0 on J. This means that V(t) is

precompact in X. On the other hand, from the proof of Theorem 3.1 we know that Q

(Ω1) is equicontinuous, consequently, V is also equicontinuous. By Ascoli-Arzela theo-

rem, we can obtain that V is relatively compact in C (J,X) , and so, there exists a sub-

sequence of {u(t,εn)} which converges uniformly on J to some u∗ ∈ C(J,X) . In view of

(3.10), we see that {u(t,εn)} is non-increasing. Let
{
u(t, εni)

}
converge to u*, for i >j, we

have u
(
t, εni

)
< u

(
t, εnj

)
, which implies that u* ≤ u(t,εn). For any � > 0, there exists k

such that

∥∥u(t, εnk) − u∗∥∥ <
ε

N
.

Thus, for n ≥ nk, we get u∗ ≤ u(t, εn) ≤ u
(
t, εnk

)
. This, together with the normality

of P, yields that∥∥u(t, εn) − u∗∥∥ ≤ N
∥∥u (t, εnk)− u∗∥∥ < ε,

which implies that {u(t,εn)} itself converges to u* uniformly on J. So, we have

f (t, u(t, εn)) + εn → f (t, u∗(t)), n → ∞, t ∈ J. (3:11)
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On the other hand, we know that

(t − s)β−1
∥∥Pβ(t − s)

[
f (s, u(s, εn)) + εn

]∥∥ ≤ Mβ

�(β + 1)

(‖μ‖L∞(J,R+) + δ
)
(t − s)β−1. (3:12)

It follows from (3.9), (3.11), (3.12) and the Lebesgue dominated convergence theorem

that

u∗ = Sβ(t)u0 +

t∫
0

(t − s)β−1Pβ(t − s)f (s, u∗(s))ds.

Consequently, u* is a mild solution of the IVP (1.1).

Let u(t) be any solution of the IVP (1.1). It is obvious that

u(0) = u0 < u0 + εn = u(0, εn)

u(t) < Sβ(t)u0 +

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s)) + εn

]
ds,

u(t, εn) = Sβ(t)(u0 + εn) +

t∫
0

(t − s)β−1Pβ(t − s)
[
f (s, u(s, εn)) + εn

]
ds.

By (H4) and Lemma 2.5, we deduce that

u(t) < u(t, εn).

Let n ® ∞, we have

u(t) ≤ u∗(t).

Thus u* is a maximal mild solution of the IVP (1.1).

Similar to the above proof, one can prove that the IVP (1.1) has a minimal mild solu-

tion in Ω1, we omit it here.

The proof is complete.

Remark 3.3. In Theorem 3.2, we do not assume f(t,Br) = {f(t,u) : u � Br} is relatively

compact in X for any t Î J and r > 0, therefore, Theorem 3.2 in this article is the

extension of the main result in [15, Theorem 2.1].
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