41 research outputs found

    General synthesis of 2D rare-earth oxide single crystals with tailorable facets

    Get PDF
    Two-dimensional (2D) rare-earth oxides (REOs) are a large family of materials with various intriguing applications and precise facet control is essential for investigating new properties in the 2D limit. However, a bottleneck remains with regard to obtaining their 2D single crystals with specific facets because of the intrinsic non-layered structure and disparate thermodynamic stability of different facets. Herein, for the first time, we achieve the synthesis of a wide variety of high-quality 2D REO single crystals with tailorable facets via designing a hard-soft-acid-base couple for controlling the 2D nucleation of the predetermined facets and adjusting the growth mode and direction of crystals. Also, the facet-related magnetic properties of 2D REO single crystals were revealed. Our approach provides a foundation for further exploring other facet-dependent properties and various applications of 2D REO, as well as inspiration for the precise growth of other non-layered 2D materials

    Volumetric abnormalities of thalamic subnuclei in medication-overuse headache

    No full text
    Abstract Background The thalamus exerts a pivotal role in pain processing and cortical excitability control and a previous voxel-based morphometry study confirmed increased volume in bilateral thalamus in medication-overuse headache (MOH). The aim of this study is to investigate altered thalamic subnuclei volume in MOH compared with normal controls, and to evaluate the relationship of each thalamic subnuclei volume with the clinical variables. Methods High resolution three-dimensional T1-weighted fast spoiled gradient recalled echo MR images were obtained from 27 patients with MOH and 27 normal controls (NC). Thalamic subnuclei templates were created based on Talairach template with MNI space transformation, and the individual thalamic subnuclei templates were generated by applying the deformation field from structural image segment to the thalamic subnuclei templates, and then individual thalamci subnuclei volume were calculated. Results The whole thalamus and each thalamic subnuclei presented increased volume compared with NC (P  0.05). Conclusion Increased gray matter volume in the whole thalamus and all the thalamus subnuclei may reflect central sensitization and higher-order of pain alteration in MOH. These structural changes in the thalamus may also be influenced by mood disturbances related to the MOH

    Activation of subnanometric Pt on Cu-modified CeO2 via redox-coupled atomic layer deposition for CO oxidation

    No full text
    Improving low-temperature activity and noble-metal efficiency remains a challenge for next generation exhaust catalysts. Here, the authors achieve the activation of subnanometric Pt on Cu-modified CeO2 for low-temperature CO oxidation with an onset below room temperature

    Production of Polyhydroxyalkanoates in Unsterilized Hyper-Saline Medium by Halophiles Using Waste Silkworm Excrement as Carbon Source

    No full text
    The chlorophyll ethanol-extracted silkworm excrement was hardly biologically reused or fermented by most microorganisms. However, partial extremely environmental halophiles were reported to be able to utilize a variety of inexpensive carbon sources to accumulate polyhydroxyalkanoates. In this study, by using the nile red staining and gas chromatography assays, two endogenous haloarchaea strains: Haloarcula hispanica A85 and Natrinema altunense A112 of silkworm excrement were shown to accumulate poly(3-hydroxybutyrate) up to 0.23 g/L and 0.08 g/L, respectively, when using the silkworm excrement as the sole carbon source. The PHA production of two haloarchaea showed no significant decreases in the silkworm excrement medium without being sterilized compared to that of the sterilized medium. Meanwhile, the CFU experiments revealed that there were more than 60% target PHAs producing haloarchaea cells at the time of the highest PHAs production, and the addition of 0.5% glucose into the open fermentation medium can largely increase both the ratio of target haloarchaea cells (to nearly 100%) and the production of PHAs. In conclusion, our study demonstrated the feasibility of using endogenous haloarchaea to utilize waste silkworm excrement, effectively. The introduce of halophiles could provide a potential way for open fermentation to further lower the cost of the production of PHAs

    Epitaxial II–VI Tripod Nanocrystals: A Generalization of van der Waals Epitaxy for Nonplanar Polytypic Nanoarchitectures

    No full text
    We report for the first time the synthesis of nonplanar epitaxial tripod nanocrystals of II–VI compounds (ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe) on muscovite mica substrate. With CdS as a case study, we conclude <i>via</i> Raman spectroscopy and electron microscopy studies that the tripods, which are found to be polytypic, followed a seeded growth mechanism. The epitaxy, manifested by the in-plane alignment of the legs of the tripods within a substrate, is attributed to the van der Waals interaction between the tripod bases and the mica surface, instead of to the covalent chemical bond which would require lattice matching between the epilayer and the substrate. The results demonstrated herein could have widespread immediate implications, including the potential of van der Waals epitaxy to be applicable in producing ordered arrays of more complex nanoarchitectures from various classes of compounds toward a broad range of technological applications

    The Alteration of Brain Interstitial Fluid Drainage with Myelination Development.

    Get PDF
    The integrity of myelination is crucial for maintaining brain interstitial fluid (ISF) drainage in adults; however, the mechanism of ISF drainage with immature myelin in the developing brain remains unknown. In the present study, the ISF drainage from the caudate nucleus (Cn) to the ipsilateral cortex was studied at different developmental stages of the rat brain (P 10, 20, 30, 40, 60, 80, 10-80). The results show that the traced ISF drained to the cortex from Cn and to the thalamus in an opposite direction before P30. From P40, we found impeded drainage to the thalamus due to myelin maturation. This altered drainage was accompanied by enhanced cognitive and social functions, which were consistent with those in the adult rats. A significant difference in diffusion parameters was also demonstrated between the extracellular space (ECS) before and after P30. The present study revealed the alteration of ISF drainage regulated by myelin at different stages during development, indicating that a regional ISF homeostasis may be essential for mature psychological and cognitive functions
    corecore