132 research outputs found

    Implications of C1q/TNF-related protein superfamily in patients with coronary artery disease.

    Get PDF
    The C1q complement/TNF-related protein superfamily (CTRPs) displays differential effects on the regulation of metabolic homeostasis, governing cardiovascular function. However, whether and how they may serve as predictor/pro-diagnosis factors for assessing the risks of coronary artery disease (CAD) remains controversial. Therefore, we performed a clinical study to elaborate on the implication of CTRPs (CTRP1, CTRP5, CTRP7, and CTRP15) in CAD. CTRP1 were significantly increased, whereas CTRP7 and CTRP15 levels were decreased in CAD patients compared to the non-CAD group. Significant differences in CTRP1 levels were discovered between the single- and triple-vascular-vessel lesion groups. ROC analysis revealed that CTRP7 and CTRP15 may serve as CAD markers, while CTRP1 may serve as a marker for the single-vessel lesion of CAD. CTRP1 and CTRP5 can serve as markers for the triple-vessel lesion. CTRP1 may serve as an independent risk predictor for triple-vessel lesion, whereas CTRP15 alteration may serve for a single-vessel lesion of CAD. CTRP1 may serve as a novel superior biomarker for diagnosis of severity of vessel-lesion of CAD patients. CTRP7, CTRP15 may serve as more suitable biomarker for the diagnosis of CAD patients, whereas CTRP5 may serve as an independent predictor for CAD. These findings suggest CTRPs may be the superior predictive factors for the vascular lesion of CAD and represent novel therapeutic targets against CAD

    Facile synthesis of carbon-11-labeled sEH/PDE4 dual inhibitors as new potential PET agents for imaging of sEH/PDE4 enzymes in neuroinflammation

    Get PDF
    To develop PET tracers for imaging of neuroinflammation, new carbon-11-labeled sEH/PDE4 dual inhibitors have been synthesized. The reference standard N-(4-methoxy-2-(trifluoromethyl)benzyl)benzamide (1) and its corresponding desmethylated precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)benzamide (2) were synthesized from (4-methoxy-2-(trifluoromethyl)phenyl)methanamine and benzoic acid in one and two steps with 84% and 49% overall chemical yield, respectively. The standard N-(4-methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (MPPA, 4) and its precursor N-(4-hydroxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide (5) were synthesized from methyl 4-piperidinecarboxylate, propionyl chloride and (4-methoxy-2-(trifluoromethyl)phenyl)methanamine in two and three steps with 62% and 34% overall chemical yield, respectively. The target tracers N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)benzamide ([11C]1) and N-(4-[11C]methoxy-2-(trifluoromethyl)benzyl)-1-propionylpiperidine-4-carboxamide ([11C]MPPA, [11C]4) were prepared from their corresponding precursors 2 and 5 with [11C]CH3OTf through O-[11C]methylation and isolated by HPLC combined with SPE in 25–35% radiochemical yield, based on [11C]CO2 and decay corrected to end of bombardment (EOB). The radiochemical purity was >99%, and the molar activity (AM) at EOB was 370–740 GBq/μmol with a total synthesis time of 35–40-minutes from EOB

    Radiosynthesis of carbon-11 labeled PDE5 inhibitors as new potential PET radiotracers for imaging of Alzheimer's disease

    Get PDF
    To develop PET tracers for imaging of Alzheimer's disease, new carbon-11 labeled potent and selective PDE5 inhibitors have been synthesized. The reference standards (5) and (12), and their corresponding desmethylated precursors (6) and (13) were synthesized from methyl 2-amino-5-bromobenzoate and (4-methoxyphenyl)methanamine in multiple steps with 2%, 1%, 1% and 0.2% overall chemical yield, respectively. The radiotracers ([11C]5) and ([11C]12) were prepared from their corresponding precursors 6 and 13 with [11C]CH3OTf through O–11C-methylation and isolated by HPLC combined with SPE in 40–50% radiochemical yield, based on [11C]CO2 and decay corrected to EOB. The radiochemical purity was >99%, and the molar activity (Am) at EOB was in a range of 370–740 GBq/μmol

    Perturbed Lipidomic Profiles in Rats With Chronic Cerebral Ischemia Are Regulated by Xiao-Xu-Ming Decoction

    Get PDF
    Chronic cerebral ischemia (CCI) is a serious human health condition with lacking therapeutic agents. Moreover, its mechanism of action remains elusive, and thus novel treatment options are required. Lipid metabolism disorder are closely related to CCI. In this study, a CCI-rats model was established by the permanent occlusion of rat bilateral common carotid arteries, and then the rats were treated with a Xiao-Xu-Ming decoction (XXMD). Lipidomic profiling was conducted in both plasma and brain o determine the effects of the injury and therapy on lipid metabolism. Sphingolipid (particularly long acyl chain and total ceramides), glyceryl phosphatide, and glyceride profiles significantly changed in the brain after model induction and again after dosing. A total of 35 potential biomarkers were found in the brain and four were found in the plasma, representing both CCI injury and XXMD action. Correlations between endogenous lipids and exogenous XXMD compounds were analyzed using linear regression. Two exogenous compounds (cimifugin and 5-O-methylvisamminol) in the brain and 17 exogenous compounds in the plasma, which may represent the active constituents in XXMD, were significantly associated with lipid metabolism. This study provides a new perspective on the potential mechanism of CCI and its treatment with XXMD, as well as on discovering effective components in traditional Chinese medicines

    Valence band offset of InN/BaTiO3 heterojunction measured by X-ray photoelectron spectroscopy

    Get PDF
    X-ray photoelectron spectroscopy has been used to measure the valence band offset of the InN/BaTiO(3 )heterojunction. It is found that a type-I band alignment forms at the interface. The valence band offset (VBO) and conduction band offset (CBO) are determined to be 2.25 ± 0.09 and 0.15 ± 0.09 eV, respectively. The experimental VBO data is well consistent with the value that comes from transitivity rule. The accurate determination of VBO and CBO is important for use of semiconductor/ferrroelectric heterojunction multifunctional devices

    Observation of a multitude of correlated states at the surface of bulk 1T-TaSe2_2 crystals

    Full text link
    The interplay between electron-electron interactions and structural ordering can yield exceptionally rich correlated electronic phases. We have used scanning tunneling microscopy to investigate bulk 1T-TaSe2 and have uncovered surprisingly diverse correlated surface states thereof. These surface states exhibit the same in-plane charge density wave ordering but dramatically different electronic ground states ranging from insulating to metallic. The insulating variety of surface state shows signatures of a decoupled surface Mott layer. The metallic surface states, on the other hand, exhibit zero-bias peaks of varying strength that suggest Kondo phases arising from coupling between the Mott surface layer and the metallic bulk of 1T-TaSe2. The surface of bulk 1T-TaSe2 thus constitutes a rare realization of the periodic Anderson model covering a wide parameter regime, thereby providing a model system for accessing different correlated phenomena in the same crystal. Our results highlight the central role played by strong correlations in this material family
    • …
    corecore