3,743 research outputs found

    Measuring Accuracy of Automated Parsing and Categorization Tools and Processes in Digital Investigations

    Full text link
    This work presents a method for the measurement of the accuracy of evidential artifact extraction and categorization tasks in digital forensic investigations. Instead of focusing on the measurement of accuracy and errors in the functions of digital forensic tools, this work proposes the application of information retrieval measurement techniques that allow the incorporation of errors introduced by tools and analysis processes. This method uses a `gold standard' that is the collection of evidential objects determined by a digital investigator from suspect data with an unknown ground truth. This work proposes that the accuracy of tools and investigation processes can be evaluated compared to the derived gold standard using common precision and recall values. Two example case studies are presented showing the measurement of the accuracy of automated analysis tools as compared to an in-depth analysis by an expert. It is shown that such measurement can allow investigators to determine changes in accuracy of their processes over time, and determine if such a change is caused by their tools or knowledge.Comment: 17 pages, 2 appendices, 1 figure, 5th International Conference on Digital Forensics and Cyber Crime; Digital Forensics and Cyber Crime, pp. 147-169, 201

    The hyperfine structure of the 13Δg state of Na 2

    Get PDF
    The hyperfine Hamiltonian for a homonuclear diatomic molecule was expressed in the Hund's case b βS basis. With this matrix, the hyperfine splittings for the Na 2 1 3Δ g state were theoretically calculated. The hyperfine spectra of Na 2 1 3Δ g ← b 3π 1u transitions for both high- and low-rotational quantum numbers were reanalyzed. Overall, significant results were obtained.published_or_final_versio

    Deletion of Insulin-Degrading Enzyme Elicits Antipodal, Age-Dependent Effects on Glucose and Insulin Tolerance

    Get PDF
    Insulin-degrading enzyme (IDE) is widely recognized as the principal protease responsible for the clearance and inactivation of insulin, but its role in glycemic control in vivo is poorly understood. We present here the first longitudinal characterization, to our knowledge, of glucose regulation in mice with pancellular deletion of the IDE gene (IDE-KO mice).IDE-KO mice and wild-type (WT) littermates were characterized at 2, 4, and 6 months of age in terms of body weight, basal glucose and insulin levels, and insulin and glucose tolerance. Consistent with a functional role for IDE in insulin clearance, fasting serum insulin levels in IDE-KO mice were found to be ∼3-fold higher than those in wild-type (WT) controls at all ages examined. In agreement with previous observations, 6-mo-old IDE-KO mice exhibited a severe diabetic phenotype characterized by increased body weight and pronounced glucose and insulin intolerance. In marked contrast, 2-mo-old IDE-KO mice exhibited multiple signs of improved glycemic control, including lower fasting glucose levels, lower body mass, and modestly enhanced insulin and glucose tolerance relative to WT controls. Biochemically, the emergence of the diabetic phenotype in IDE-KO mice correlated with age-dependent reductions in insulin receptor (IR) levels in muscle, adipose, and liver tissue. Primary adipocytes harvested from 6-mo-old IDE-KO mice also showed functional impairments in insulin-stimulated glucose uptake.Our results indicate that the diabetic phenotype in IDE-KO mice is not a primary consequence of IDE deficiency, but is instead an emergent compensatory response to chronic hyperinsulinemia resulting from complete deletion of IDE in all tissues throughout life. Significantly, our findings provide new evidence to support the idea that partial and/or transient inhibition of IDE may constitute a valid approach to the treatment of diabetes

    Multiphoton Absorption Stimulated Metal Chalcogenide Quantum Dot Solar Cells under Ambient and Concentrated Irradiance

    Get PDF
    Colloidal metal chalcogenide quantum dots (QDs) have excellent quantum efficiency in light–matter interactions and good device stability. However, QDs have been brought to the forefront as viable building blocks in bottom‐up assembling semiconductor devices, the development of QD solar cell (QDSC) is still confronting considerable challenges compared to other QD technologies due to their low performance under natural sunlight, as a consequence of untapped potential from their quantized density‐of‐state and inorganic natures. This report is designed to address this long‐standing challenge by accessing the feasibility of using QDSC for indoor and concentration PV (CPV) applications. This work finds that above bandgap photon energy irradiation of QD solids can generate high densities of excitons via multi‐photon absorption (MPA), and these excitons are not limited to diffuse by Auger recombination up to 1.5 × 1019 cm−3 densities. Based on these findings, a 19.5% (2000 lux indoor light) and an 11.6% efficiency (1.5 Suns) have been facilely realized from ordinary QDSCs (9.55% under 1 Sun). To further illustrate the potential of the MPA in QDSCs, 21.29% efficiency polymer lens CPVs (4.08 Suns) and viable sensor networks powered by indoor QDSCs matrix have been demonstrated

    Dirac Equation with Spin Symmetry for the Modified P\"oschl-Teller Potential in DD-dimensions

    Full text link
    We present solutions of the Dirac equation with spin symmetry for vector and scalar modified P\"oschl-Teller potential within framework of an approximation of the centrifugal term. The relativistic energy spectrum is obtained using the Nikiforov-Uvarov method and the two-component spinor wavefunctions are obtain are in terms of the Jacobi polynomials. It is found that there exist only positive-energy states for bound states under spin symmetry, and the energy levels increase with the dimension and the potential range parameter α\alpha.Comment: 9 pages and 1tabl

    Neutron Electric Dipole Moment Constraint on Scale of Minimal Left-Right Symmetric Model

    Full text link
    Using an effective theory approach, we calculate the neutron electric dipole moment (nEDM) in the minimal left-right symmetric model with both explicit and spontaneous CP violations. We integrate out heavy particles to obtain flavor-neutral CP-violating effective Lagrangian. We run the Wilson coefficients from the electroweak scale to the hadronic scale using one-loop renormalization group equations. Using the state-of-the-art hadronic matrix elements, we obtain the nEDM as a function of right-handed W-boson mass and CP-violating parameters. We use the current limit on nEDM combined with the kaon-decay parameter ϵ\epsilon to provide the most stringent constraint yet on the left-right symmetric scale MWR>(10±3) M_{W_R} > (10 \pm 3) TeV.Comment: 20 pages and 8 figure

    Identification of Serum MicroRNAs as Novel Non-Invasive Biomarkers for Early Detection of Gastric Cancer

    Get PDF
    BACKGROUND: To investigate the potential of serum miRNAs as biomarkers for early detection of gastric cancer (GC), a population-based study was conducted in Linqu, a high-risk area of GC in China. METHODOLOGY/PRINCIPAL FINDINGS: All subjects were selected from two large cohort studies. Differential miRNAs were identified in serum pools of GC and control using TaqMan low density array, and validated in individual from 82 pairs of GC and control, and 46 pairs of dysplasia and control by real-time quantitative reverse transcription-polymerase chain reaction. The temporal trends of identified serum miRNA expression were further explored in a retrospective study on 58 GC patients who had at least one pre-GC diagnosis serum sample based on the long-term follow-up population. The miRNA profiling results demonstrated that 16 miRNAs were markedly upregulated in GC patients compared to controls. Further validation identified a panel of three serum miRNAs (miR-221, miR-744, and miR-376c) as potential biomarkers for GC detection, and receiver operating characteristic (ROC) curve-based risk assessment analysis revealed that this panel could distinguish GCs from controls with 82.4% sensitivity and 58.8% specificity. MiR-221 and miR-376c demonstrated significantly positive correlation with poor differentiation of GC, and miR-221 displayed higher level in dysplasia than in control. Furthermore, the retrospective study revealed an increasing trend of these three miRNA levels during GC development (P for trend<0.05), and this panel could classify serum samples collected up to 5 years ahead of clinical GC diagnosis with 79.3% overall accuracy. CONCLUSIONS/SIGNIFICANCE: These data suggest that serum miR-221, miR-376c and miR-744 have strong potential as novel non-invasive biomarkers for early detection of GC

    A trial for the use of qigong in the treatment of pre and mild essential hypertension: a study protocol for a randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hypertension is a risk factor for cardiovascular disease, and the prevalence of hypertension tends to increase with age. Current treatments for hypertension have side effects and poor adherence. Qigong has been studied as an alternative therapy for hypertension; however, the types of qigong used in those studies were diverse, and there have not been many well-designed randomized controlled trials.</p> <p>Our objectives are the following: 1) To evaluate the effects of qigong on blood pressure, health status and hormone levels for pre- or mild hypertension. 2) To test the methodological appropriateness of this clinical trial and calculate a sample size for future randomized trials.</p> <p>Methods</p> <p>Forty subjects with pre- or mild hypertension will be randomized to either the qigong exercise group or the non-treated group. Participants in the qigong group will conduct qigong exercises 5 times per week for 8 weeks, and participants in the non-treated group will maintain their current lifestyle, including diet and exercise. The use of antihypertensive medication is not permitted. The primary endpoint is a change in patient blood pressure. Secondary endpoints are patient health status (as measured by the SF-36 and the MYMOP2 questionnaires) and changes in hormone levels, including norepinephrine, epinephrine, and cortisol.</p> <p>Discussion</p> <p>This study will be the first randomized trial to investigate the effectiveness of qigong exercises for the treatment of pre- and mild hypertension. The results of this study will help to establish the optimal approach for the care of adults with pre- or mild hypertension.</p> <p>Trial registration</p> <p>Clinical Research Information Service KCT0000140</p

    Establishing Core Outcome Domains in Hemodialysis: Report of the Standardized Outcomes in Nephrology-Hemodialysis (SONG-HD) Consensus Workshop

    Get PDF
    Evidence-informed decision making in clinical care and policy in nephrology is undermined by trials that selectively report a large number of heterogeneous outcomes, many of which are not patient centered. The Standardized Outcomes in Nephrology-Hemodialysis (SONG-HD) Initiative convened an international consensus workshop on November 7, 2015, to discuss the identification and implementation of a potential core outcome set for all trials in hemodialysis. The purpose of this article is to report qualitative analyses of the workshop discussions, describing the key aspects to consider when establishing core outcomes in trials involving patients on hemodialysis therapy. Key stakeholders including 8 patients/caregivers and 47 health professionals (nephrologists, policymakers, industry, and researchers) attended the workshop. Attendees suggested that identifying core outcomes required equitable stakeholder engagement to ensure relevance across patient populations, flexibility to consider evolving priorities over time, deconstruction of language and meaning for conceptual consistency and clarity, understanding of potential overlap and associations between outcomes, and an assessment of applicability to the range of interventions in hemodialysis. For implementation, they proposed that core outcomes must have simple, inexpensive, and validated outcome measures that could be used in clinical care (quality indicators) and trials (including pragmatic trials) and endorsement by regulatory agencies. Integrating these recommendations may foster acceptance and optimize the uptake and translation of core outcomes in hemodialysis, leading to more informative research, for better treatment and improved patient outcomes
    corecore