27,880 research outputs found
Sensitivity and Linearity of Superconducting Radio-Frequency Single-Electron Transistors: Effects of Quantum Charge Fluctuations
We have investigated the effects of quantum fluctuations of quasiparticles on
the operation of superconducting radio-frequency single-electron transistors
(RF-SETs) for large values of the quasiparticle cotunneling parameter
, where and are the Josephson and charging
energies. We find that for , subgap RF-SET operation is still
feasible despite quantum fluctuations that renormalize the SET charging energy
and wash out quasiparticle tunneling thresholds. Surprisingly, such RF-SETs
show linearity and signal-to-noise ratio superior to those obtained when
quantum fluctuations are weak, while still demonstrating excellent charge
sensitivity.Comment: Submitted to Phys. Rev. Let
Evaluation of Ginsenoside Rg1 as a Potential Antioxidant for Preventing or Ameliorating Progression of Atherosclerosis
Purpose: To determine whether Rg1 inhibits H2O2-induced injury in human umbilical vein endothelial cells (HUVECs), an injury often regarded as a key early event in the development of atherosclerosis.Methods: Cell viability of HUVECs treated with Rg1 and/or H2O2 was measured using 3-(4, 5- dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide ( MTT) assay. Lactate dehydrogenase (LDH) release, lipid peroxidation, and reserved oxidase were detected using different available kits. The apoptosis pathway involved in the effect of Rg1 was also evaluated.Results: Exposing HUVECs to 100 μmol/L H2O2 significantly decreased cell viability (78.12 ± 1.78 %), nitric oxide production, and nitric oxide synthase, superoxide dismutase, and glutathione activities, but markedly increased malondialdehyde content (from 26.87 ± 3.97 to 45.84 ± 3.50 nmol/mg of protein) and LDH release (from 8.63 to 31.42 %) (p < 0.05). These results were accompanied by a decrease in mitochondrial membrane potential and up-regulation of Bid and caspase-3, -8, and -9 mRNA expressions. However, pretreatment with different Rg1 concentrations (4, 8, and 16 μmol/L) markedly attenuated these changes (p < 0.05).Conclusion: Rg1 may protect HUVECs against H2O2-induced injury via the anti-oxidative and antiapoptosis mechanisms, which could be applied potentially for the prevention of endothelial cell dysfunctions associated with atherosclerosis.Keywords: Ginsenoside Rg1; Human umbilical vein endothelium, Oxidative damage; Atherosclerosis
On Local Equivalence, Surface Code States and Matroids
Recently, Ji et al disproved the LU-LC conjecture and showed that the local
unitary and local Clifford equivalence classes of the stabilizer states are not
always the same. Despite the fact this settles the LU-LC conjecture, a
sufficient condition for stabilizer states that violate the LU-LC conjecture is
missing. In this paper, we investigate further the properties of stabilizer
states with respect to local equivalence. Our first result shows that there
exist infinitely many stabilizer states which violate the LU-LC conjecture. In
particular, we show that for all numbers of qubits , there exist
distance two stabilizer states which are counterexamples to the LU-LC
conjecture. We prove that for all odd , there exist stabilizer
states with distance greater than two which are LU equivalent but not LC
equivalent. Two important classes of stabilizer states that are of great
interest in quantum computation are the cluster states and stabilizer states of
the surface codes. To date, the status of these states with respect to the
LU-LC conjecture was not studied. We show that, under some minimal
restrictions, both these classes of states preclude any counterexamples. In
this context, we also show that the associated surface codes do not have any
encoded non-Clifford transversal gates. We characterize the CSS surface code
states in terms of a class of minor closed binary matroids. In addition to
making connection with an important open problem in binary matroid theory, this
characterization does in some cases provide an efficient test for CSS states
that are not counterexamples.Comment: LaTeX, 13 pages; Revised introduction, minor changes and corrections
mainly in section V
Analysis of RTN signals in Resistive-Switching RAM device and its correlation with device operations
Filament rupture/restoration induced by movement of defects, e.g. oxygen ions/vacancies, is considered as the switching mechanism in HfO2 RRAM. However, details of filament alteration during switching are still speculative, due to the limitations of existing experiment-based probing techniques, impeding its understanding. In this work, for the first time, an RTN-based defect tracking technique is developed for RRAM devices, which can monitor the movements of defects and statistically provide their spatial and energy profiles. The critical filament region is experimentally identified and its alteration is observed and correlated with switching operations under various operation conditions. This provides a useful tool for further development of RRAM technology
On-Chip Matching Networks for Radio-Frequency Single-Electron-Transistors
In this letter, we describe operation of a radio-frequency superconducting
single electron transistor (RF-SSET) with an on-chip superconducting LC
matching network consisting of a spiral inductor L and its capacitance to
ground. The superconducting network has a lower parasitic capacitance and gives
a better matching for the RF-SSET than does a commercial chip inductor.
Moreover, the superconducting network has negligibly low dissipation, leading
to sensitive response to changes in the RF-SSET impedance. The charge
sensitivity 2.4*10^-6 e/(Hz)^1/2 in the sub-gap region and energy sensitivity
of 1.9 hbar indicate that the RF-SSET is operating in the vicinity of the shot
noise limit.Comment: 3 pages, 3 figures, REVTeX 4. To appear in Appl. Phys. Let
Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy
© The Minerals, Metals & Materials Society and ASM International 2012The twin screw rheo-extrusion (TSRE) is designed to take advantage of the nondendritc microstructure and thixotropic characterization of semisolid-metal slurries and produce simple metal profiles directly from melts. The extrusion equipment consists of a rotor-stator high shear slurry maker, a twin screw extruder, and a die assembly. The process is continuous and has a potential for significantly saving energy, manufacturing cost, and enhancing efficiency. The present investigation was carried out to study the process performance for processing rods of an AZ91D magnesium alloy and the microstructure evolution during processing. The semisolid slurry prepared by the process was characterized by uniformly distributed nondendritic granular primary phase particles. AZ91D rods with uniform and fine microstructures and moderate mechanical properties were produced. For the given slurry making parameters, decreasing extrusion temperature was found to improve microstructures and properties. The mechanisms of particle granulation and refinement and the effect of processing parameters on process performance and thermal management are discussed. © 2012 The Minerals, Metals & Materials Society and ASM International.EPSRC (UK) and Rautomead Lt
- …