research

On Local Equivalence, Surface Code States and Matroids

Abstract

Recently, Ji et al disproved the LU-LC conjecture and showed that the local unitary and local Clifford equivalence classes of the stabilizer states are not always the same. Despite the fact this settles the LU-LC conjecture, a sufficient condition for stabilizer states that violate the LU-LC conjecture is missing. In this paper, we investigate further the properties of stabilizer states with respect to local equivalence. Our first result shows that there exist infinitely many stabilizer states which violate the LU-LC conjecture. In particular, we show that for all numbers of qubits n28n\geq 28, there exist distance two stabilizer states which are counterexamples to the LU-LC conjecture. We prove that for all odd n195n\geq 195, there exist stabilizer states with distance greater than two which are LU equivalent but not LC equivalent. Two important classes of stabilizer states that are of great interest in quantum computation are the cluster states and stabilizer states of the surface codes. To date, the status of these states with respect to the LU-LC conjecture was not studied. We show that, under some minimal restrictions, both these classes of states preclude any counterexamples. In this context, we also show that the associated surface codes do not have any encoded non-Clifford transversal gates. We characterize the CSS surface code states in terms of a class of minor closed binary matroids. In addition to making connection with an important open problem in binary matroid theory, this characterization does in some cases provide an efficient test for CSS states that are not counterexamples.Comment: LaTeX, 13 pages; Revised introduction, minor changes and corrections mainly in section V

    Similar works

    Full text

    thumbnail-image

    Available Versions