6 research outputs found

    Proton-coupled gating in chloride channels

    No full text
    The physiologically indispensable chloride channel (CLC) family is split into two classes of membrane proteins: chloride channels and chloride/proton antiporters. In this article we focus on the relationship between these two groups and specifically review the role of protons in chloride-channel gating. Moreover, we discuss the evidence for proton transport through the chloride channels and explore the possible pathways that the protons could take through the chloride channels. We present results of a mutagenesis study, suggesting the feasibility of one of the pathways, which is closely related to the proton pathway proposed previously for the chloride/proton antiporters. We conclude that the two groups of CLC proteins, although in principle very different, employ similar mechanisms and pathways for ion transport

    Structural basis of mechanochemical coupling in a hexameric molecular motor

    No full text
    The P4 protein of bacteriophage φ 12 is a hexameric molecular motor closely related to superfamily 4 helicases. P4 converts chemical energy from ATP hydrolysis into mechanical work, to translocate single-stranded RNA into a viral capsid. The molecular basis of mechanochemical coupling, i.e. how small ∼1 Å changes in the ATP-binding site are amplified into nanometer scale motion along the nucleic acid, is not understood at the atomic level. Here we study in atomic detail the mechanochemical coupling using structural and biochemical analyses of P4 mutants. We show that a conserved region, consisting of superfamily 4 helicase motifs H3 and H4 and loop L2, constitutes the moving lever of the motor. The lever tip encompasses an RNA-binding site that moves along the mechanical reaction coordinate. The lever is flanked by γ-phosphate sensors (Asn-234 and Ser-252) that report the nucleotide state of neighboring subunits and control the lever position. Insertion of an arginine finger (Arg-279) into the neighboring catalytic site is concomitant with lever movement and commences ATP hydrolysis. This ensures cooperative sequential hydrolysis that is tightly coupled to mechanical motion. Given the structural conservation, the mutated residues may play similar roles in other hexameric helicases and related molecular motors. © 2008 by The American Society for Biochemistry and Molecular Biology, Inc
    corecore