250 research outputs found

    Role of a Genetic Variant on the 15q25.1 Lung Cancer Susceptibility Locus in Smoking-Associated Nasopharyngeal Carcinoma

    Get PDF
    Background: The 15q25.1 lung cancer susceptibility locus, containing CHRNA5, could modify lung cancer susceptibility and multiple smoking related phenotypes. However, no studies have investigated the association between CHRNA5 rs3841324, which has been proven to have the highest association with CHRNA5 mRNA expression, and the risk of other smoking-associated cancers, except lung cancer. In the current study we examined the association between rs3841324 and susceptibility to smoking-associated nasopharyngeal carcinoma (NPC). Methods: In this case-control study we genotyped the CHRNA5 rs3841324 polymorphism with 400 NPC cases and 491 healthy controls who were Han Chinese and frequency-matched by age (±5 years), gender, and alcohol consumption. Univariate and multivariate logistic regression analyses were used to calculate the odds ratio (OR) and 95% confidence intervals (95% CI)

    Vertical Distribution of Soil Organic Carbon in China

    Full text link

    The genetic and epigenetic regulation of CD55 and its pathway analysis in colon cancer

    Get PDF
    BackgroundCD55 plays an important role in the development of colon cancer. This study aims to evaluate the expression of CD55 in colon cancer and discover how it is regulated by transcriptional factors and miRNA.MethodsThe expression of CD55 was explored by TIMER2.0, UALCAN, and Human Protein Atlas (HPA) databases. TRANSFAC and Contra v3 were used to predict the potential binding sites of transcription factors in the CD55 promoter. TargetScan and starBase v2.0 were used to predict the potential binding ability of miRNAs to the 3′ untranslated region (3′UTR) of CD55. SurvivalMeth was used to explore the differentially methylated sites in the CD55 promoter. Western blotting was used to detect the expression of TFCP2 and CD55. Dual-luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were performed to determine the targeting relationship of TFCP2, NF-κB, or miR-27a-3p with CD55. CD55-related genes were explored by constructing a protein–protein interaction (PPI) network and performing pathway analysis by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG).ResultsCD55 was highly expressed in colon cancer tissues. The mRNA and protein expression levels of TFCP2 were reduced by si-TFCP2. NF-κB mRNA was obviously reduced by NF-κB inhibitor and increased by NF-κB activator. CD55 protein was also inhibited by miR-27a-3p. Dual-luciferase reporter assays showed that after knocking down TFCP2 or inhibiting NF-κB, the promoter activity of CD55 was decreased by 21% and 70%, respectively; after activating NF-κB, the promoter activity of CD55 increased by 2.3 times. As TFCP2 or NF-κB binding site was mutated, the transcriptional activity of CD55 was significantly decreased. ChIP assay showed that TFCP2 and NF-κB combined to the promoter of CD55. The luciferase activity of CD55 3′UTR decreased after being co-transfected with miR-27a-3p mimics and increased by miR-27a-3p antagomir. As the miR-27a-3p binding site was mutated, we did not find any significant effect of miR-27a-3p on reporter activity. PPI network assay revealed a set of CD55-related genes, which included CFP, CFB, C4A, and C4B. GO and KEGG analyses revealed that the target genes occur more frequently in immune-related pathways.ConclusionOur results indicated that CD55 is regulated by TFCP2, NF-κB, miR-27a-3p, and several immune-related genes, which in turn affects colon cancer

    Characterization of Shiga toxin-producing Escherichia coli isolated from healthy pigs in China

    Get PDF
    BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) is recognized as an important human diarrheal pathogen. Swine plays an important role as a carrier of this pathogen. In this study we determined the prevalence and characteristics of STEC from healthy swine collected between May 2011 and August 2012 from 3 cities/provinces in China. RESULTS: A total of 1003 samples, including 326 fecal, 351 small intestinal contents and 326 colon contents samples, was analyzed. Two hundred and fifty five samples were stx-positive by PCR and 93 STEC isolates were recovered from 62 stx-positive samples. Twelve O serogroups and 19 O:H serotypes including 6 serotypes (O100:H20/[H20], O143:H38/[H38], O87:H10, O172:H30/[H30], O159:H16, O9:H30/[H30]) rarely found in swine and ruminants were identified. All 93 STEC isolates harbored stx(2) only, all of which were stx(2e) subtype including 1 isolate being a new variant of stx(2e). 53.76%, 15.05% and 2.15% STEC isolates carried astA, hlyA and ehxA respectively. Four STEC isolates harbored the high-pathogenicity island. Of the 15 adherence-associated genes tested, 13 (eae, efa1, iha, lpfA(O113), lpfA(O157/OI-154), lpfA(O157/OI-141), toxB, saa, F4, F5, F6, F17 or F41) were all absent while 2 (paa and F18) were present in 7 and 4 STEC isolates respectively. The majority of the isolates were resistant to tetracycline (79.57%), nalidixic acid (78.49%), trimethoprim-sulfamethoxazole (73.12%) and kanamycin (55.91%). The STEC isolates were divided into 63 pulsed-field gel electrophoresis patterns and 21 sequence types (STs). Isolates of the same STs generally showed the same or similar drug resistance patterns. A higher proportion of STEC isolates from Chongqing showed multidrug resistance with one ST (ST3628) resistant to 14 antimicrobials. CONCLUSIONS: Our results indicate that swine is a significant reservoir of STEC strains in China. Based on comparison by serotypes and sequence types with human strains and presence of virulence genes, the swine STEC may have a low potential to cause human disease

    Recent Changes in Atmospheric Polycyclic Aromatic Hydrocarbons (PAHs) and Nitropolycyclic Aromatic Hydrocarbons (NPAHs) in Shenyang, China

    Get PDF
    Airborne particulates were collected in three size fractions by using Anderson low-volume air samplers in Shenyang, China, in winter and summer in 2007. Compared with data obtained in 2001 at the same sites, the total concentrations of nine polycyclic aromatic hydrocarbons (PAHs) in winter decreased by 67% at one site and decreased by 40% at the other site, while the total concentrations of four nitropolycyclic aromatic hydrocarbons (NPAHs) did not decrease. This suggests that environmental countermeasures begun in 2001 were effective in decreasing the concentration of PAHs. However, in summer, the concentrations of PAHs and NPAHs rose by the factors of 4 and 5, respectively, possibly because of an increase in the number of motor vehicles. © 2011 Taylor and Francis Group, LLC

    Spread of Streptococcus suis Sequence Type 7, China

    Get PDF
    Streptococcus suis sequence type (ST) 7 has been spreading throughout China. To determine events associated with its emergence, we tested 114 isolates. In all 106 ST7 strains responsible for human outbreaks and sporadic infections, the tetracycline-resistance gene, tetM, was detected on the conjugative transposon Tn916. Horizontal transmission of tetM is suspected

    Streptococcus suis Sequence Type 7 Outbreak, Sichuan, China

    Get PDF
    An outbreak of Streptococcus suis serotype 2 emerged in the summer of 2005 in Sichuan Province, and sporadic infections occurred in 4 additional provinces of China. In total, 99 S. suis strains were isolated and analyzed in this study: 88 isolates from human patients and 11 from diseased pigs. We defined 98 of 99 isolates as pulse type I by using pulsed-field gel electrophoresis analysis of SmaI-digested chromosomal DNA. Furthermore, multilocus sequence typing classified 97 of 98 members of the pulse type I in the same sequence type (ST), ST-7. Isolates of ST-7 were more toxic to peripheral blood mononuclear cells than ST-1 strains. S. suis ST-7, the causative agent, was a single-locus variant of ST-1 with increased virulence. These findings strongly suggest that ST-7 is an emerging, highly virulent S. suis clone that caused the largest S. suis outbreak ever described

    Identification of Susceptibility Pathways for the Role of Chromosome 15q25.1 in Modifying Lung Cancer Risk

    Get PDF
    Genome-wide association studies (GWAS) identified the chromosome 15q25.1 locus as a leading susceptibility region for lung cancer. However, the pathogenic pathways, through which susceptibility SNPs within chromosome 15q25.1 affects lung cancer risk, have not been explored. We analyzed three cohorts with GWAS data consisting 42,901 individuals and lung expression quantitative trait loci (eQTL) data on 409 individuals to identify and validate the underlying pathways and to investigate the combined effect of genes from the identified susceptibility pathways. The KEGG neuroactive ligand receptor interaction pathway, two Reactome pathways, and 22 Gene Ontology terms were identified and replicated to be significantly associated with lung cancer risk, with P values less than 0.05 and FDR less than 0.1. Functional annotation of eQTL analysis results showed that the neuroactive ligand receptor interaction pathway and gated channel activity were involved in lung cancer risk. These pathways provide important insights for the etiology of lung cancer
    corecore