11,502 research outputs found

    Algorithm for Suppression of Wideband Probing in Adaptive Array with Multiple Desired Signals

    Get PDF
    The integrity of signal environment for a navigation system among other factors depends critically on the capability of the adaptive antenna array in controlling (reconfiguring) its radiation pattern for various signal scenarios. For a signal environment consisting of simultaneous multiple desired signals and probing sources, the output signal-to-noise ratio of the adaptive antenna array depends on the efficiency of the adaptive algorithm employed for weight estimation. Sufficient antenna gain is required to be maintained towards each of the desired signals, while simultaneously suppressing returns towards the sources probing from distinctly different directions. The weight estimation for the multiple desired signal environments is carried out using a novel modified version of the improved least mean square (LMS) algorithm. This modified scheme effectively suppresses the narrowband/wideband probing towards the antenna array (linear/planar). The weight estimation and the steering vector are adapted according to the multiple desired signal environments. Each spectral line of the wideband source is considered as an independent narrowband source. This is incorporated in the correlation matrix of the received signal. The simulation results demonstrate the efficacy of this novel algorithm in active cancellation of narrowband/wideband probing sources, even while the simultaneous multiple signals in desired directions are maintained. The performance of the proposed algorithm is reported to be better than that of standard LMS and recursive LMS algorithm.Defence Science Journal, 2011, 61(4), pp.325-330, DOI:http://dx.doi.org/10.14429/dsj.61.109

    Optical Spectroscopy of Type Ia Supernovae

    Get PDF
    We present 432 low-dispersion optical spectra of 32 Type Ia supernovae (SNe Ia) that also have well-calibrated light curves. The coverage ranges from 6 epochs to 36 epochs of spectroscopy. Most of the data were obtained with the 1.5m Tillinghast telescope at the F. L. Whipple Observatory with typical wavelength coverage of 3700-7400A and a resolution of ~7A. The earliest spectra are thirteen days before B-band maximum; two-thirds of the SNe were observed before maximum brightness. Coverage for some SNe continues almost to the nebular phase. The consistency of the method of observation and the technique of reduction makes this an ideal data set for studying the spectroscopic diversity of SNe Ia.Comment: Accepted for publication in the Astronomical Journal, 109 pages (including data table), 44 figures, full resolution figures at http://www.noao.edu/noao/staff/matheson/Iaspec.ps.g

    Safety-Aware Apprenticeship Learning

    Full text link
    Apprenticeship learning (AL) is a kind of Learning from Demonstration techniques where the reward function of a Markov Decision Process (MDP) is unknown to the learning agent and the agent has to derive a good policy by observing an expert's demonstrations. In this paper, we study the problem of how to make AL algorithms inherently safe while still meeting its learning objective. We consider a setting where the unknown reward function is assumed to be a linear combination of a set of state features, and the safety property is specified in Probabilistic Computation Tree Logic (PCTL). By embedding probabilistic model checking inside AL, we propose a novel counterexample-guided approach that can ensure safety while retaining performance of the learnt policy. We demonstrate the effectiveness of our approach on several challenging AL scenarios where safety is essential.Comment: Accepted by International Conference on Computer Aided Verification (CAV) 201

    Evolution of dopant-induced helium nanoplasmas

    Get PDF
    Two-component nanoplasmas generated by strong-field ionization of doped helium nanodroplets are studied in a pump-probe experiment using few-cycle laser pulses in combination with molecular dynamics simulations. High yields of helium ions and a pronounced, droplet size-dependent resonance structure in the pump-probe transients reveal the evolution of the dopant-induced helium nanoplasma. The pump-probe dynamics is interpreted in terms of strong inner ionization by the pump pulse and resonant heating by the probe pulse which controls the final charge states detected via the frustration of electron-ion recombination

    Clinical and radiological outcome of 3- and 4-part proximal humerus fracture managed with J nails in elderly osteoporotic individuals

    Get PDF
    Background: Proximal humeral fracture is 3rd most common fracture in elderly population. Selection of appropriate implant is always challenging to get optimum results in these osteoporotic bones. Though locking plates are gold standard, major complications range from 9% to 36%. To study clinical and radiological outcome of J nail technique for Neer’s three or four part proximal humeral fractures in patients more than 60 years age.Methods: We retrospectively studied 60 patients of 3 or 4 part proximal humeral fractures, >60 years of age treated with J nail technique from the period of 2015 to 2017. J nails were made using 2 mm 12 inches blunt tip Lambrinudi wires. At final follow-up, clinical outcome was assessed using constant score and radiological evaluation was done according to the Bahr criteria.Results: The mean constant score at final follow-up was 90. The postoperative reduction was excellent in 98% of patients and remained excellent in 90%. The mean postoperative neck shaft angle was 135.0° and final neck shaft angle was 131.4°. No deep infection was seen. No avascular necrosis of humeral head was found till follow up to 2 years.Conclusions: Our study suggests that the functional and radiological outcomes obtained with J nailing are excellent and similar to locking plates and percutaneous Kirschner wire fixation with many other advantages of being simple, minimally invasive, avoiding muscle transfixation and no pin site infections

    Is there Evidence for a Hubble bubble? The Nature of Type Ia Supernova Colors and Dust in External Galaxies

    Get PDF
    We examine recent evidence from the luminosity-redshift relation of Type Ia Supernovae (SNe Ia) for the 3σ\sim 3 \sigma detection of a ``Hubble bubble'' -- a departure of the local value of the Hubble constant from its globally averaged value \citep{Jha:07}. By comparing the MLCS2k2 fits used in that study to the results from other light-curve fitters applied to the same data, we demonstrate that this is related to the interpretation of SN color excesses (after correction for a light-curve shape-color relation) and the presence of a color gradient across the local sample. If the slope of the linear relation (β\beta) between SN color excess and luminosity is fit empirically, then the bubble disappears. If, on the other hand, the color excess arises purely from Milky Way-like dust, then SN data clearly favors a Hubble bubble. We demonstrate that SN data give β2\beta \simeq 2, instead of the β4\beta \simeq 4 one would expect from purely Milky-Way-like dust. This suggests that either SN intrinsic colors are more complicated than can be described with a single light-curve shape parameter, or that dust around SN is unusual. Disentangling these possibilities is both a challenge and an opportunity for large-survey SN Ia cosmology.Comment: Further information and data at http://qold.astro.utoronto.ca/conley/bubble/ Accepted for publication in ApJ

    Multi-core job submission and grid resource scheduling for ATLAS AthenaMP

    Get PDF
    AthenaMP is the multi-core implementation of the ATLAS software framework and allows the efficient sharing of memory pages between multiple threads of execution. This has now been validated for production and delivers a significant reduction on the overall application memory footprint with negligible CPU overhead. Before AthenaMP can be routinely run on the LHC Computing Grid it must be determined how the computing resources available to ATLAS can best exploit the notable improvements delivered by switching to this multi-process model. A study into the effectiveness and scalability of AthenaMP in a production environment will be presented. Best practices for configuring the main LRMS implementations currently used by grid sites will be identified in the context of multi-core scheduling optimisation

    Application of Metallic Strip Gratings for Enhancement of Electromagnetic Performance of A-sandwich Radome

    Get PDF
    Enhancement of the electromagnetic (EM) performance characteristics of A-sandwich radome wall over X-band using metallic strip gratings is presented in this work. Equivalent transmission line method in conjunction with equivalent circuit model (ECM) is used for modeling the A-sandwich radome panel with metallic strip gratings and the computation of radome performance parameters. Metallic strip grating embedded in the mid-plane of the core and those in the skin-core interface are the configurations considered in the present work. For a given thickness of metallic strip grating, its width and pitch are optimized at different angles of incidence such that the new radome wall configuration offers superior EM performance over the entire X-band as compared to the conventional A-sandwich wall. The EM analysis shows that the superior EM performance of A-sandwich with metallic strip gratings makes it suitable for the design of normal incidence and streamlined airborne radomes.Defence Science Journal, 2013, 63(5), pp.508-514, DOI:http://dx.doi.org/10.14429/dsj.63.245

    Mutual Coupling in Phased Arrays: A Review

    Get PDF
    The mutual coupling between antenna elements affects the antenna parameters like terminal impedances, reflection coefficients and hence the antenna array performance in terms of radiation characteristics, output signal-to-interference noise ratio (SINR), and radar cross section (RCS). This coupling effect is also known to directly or indirectly influence the steady state and transient response, the resolution capability, interference rejection, and direction-of-arrival (DOA) estimation competence of the array. Researchers have proposed several techniques and designs for optimal performance of phased array in a given signal environment, counteracting the coupling effect. This paper presents a comprehensive review of the methods that model and mitigate the mutual coupling effect for different types of arrays. The parameters that get affected due to the presence of coupling thereby degrading the array performance are discussed. The techniques for optimization of the antenna characteristics in the presence of coupling are also included
    corecore