32 research outputs found

    Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish

    Get PDF
    Citation: Passow, C. N., Greenway, R., Arias-Rodriguez, L., Jeyasingh, P. D., & Tobler, M. (2015). Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish. Physiological and Biochemical Zoology, 88(4), 371-383. doi:10.1086/681053Variation in energy availability or maintenance costs in extreme environments can exert selection for efficient energy use, and reductions in organismal energy demand can be achieved in two ways: reducing body mass or metabolic suppression. Whether long-term exposure to extreme environmental conditions drives adaptive shifts in body mass or metabolic rates remains an open question. We studied body size variation and variation in routine metabolic rates in locally adapted populations of extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulfide-rich springs and caves. We quantified size distributions and routine metabolic rates in wild-caught individuals from four habitat types. Compared with ancestral populations in nonsulfidic surface habitats, extremophile populations were characterized by significant reductions in body size. Despite elevated metabolic rates in cave fish, the body size reduction precipitated in significantly reduced energy demands in all extremophile populations. Laboratory experiments on common garden-raised fish indicated that elevated routine metabolic rates in cave fish likely have a genetic basis. The results of this study indicate that adaptation to extreme environments directly impacts energy metabolism, with fish living in cave and sulfide spring environments expending less energy overall during routine metabolism

    The Effect of Plant Inbreeding and Stoichiometry on Interactions with Herbivores in Nature: Echinacea angustifolia and Its Specialist Aphid

    Get PDF
    Fragmentation of once widespread communities may alter interspecific interactions by changing genetic composition of interacting populations as well as their abundances and spatial distributions. In a long-term study of a fragmented population of Echinacea angustifolia, a perennial plant native to the North American prairie, we investigated influences on its interaction with a specialist aphid and tending ants. We grew plant progeny of sib-matings (I), and of random pairings within (W) and between (B) seven remnants in a common field within 8 km of the source remnants. During the fifth growing season, we determined each plant's burden of aphids and ants, as well as its size and foliar elemental composition (C, N, P). We also assayed composition (C, N) of aphids and ants. Early in the season, progeny from genotypic classes B and I were twice as likely to harbor aphids, and in greater abundance, than genotypic class W; aphid loads were inversely related to foliar concentration of P and positively related to leaf N and plant size. At the end of the season, aphid loads were indistinguishable among genotypic classes. Ant abundance tracked aphid abundance throughout the season but showed no direct relationship with plant traits. Through its potential to alter the genotypic composition of remnant populations of Echinacea, fragmentation can increase Echinacea's susceptibility to herbivory by its specialist aphid and, in turn, perturb the abundance and distribution of aphids

    Chromate reduction in highly alkaline groundwater by zerovalent iron: Implications for its use in a permeable reactive barrier

    No full text
    It is not currently known if the widely used reaction of zerovalent iron (ZVI) and Cr(VI) can be used in a permeable reactive barrier (PRB) to immobilize Cr leaching from hyperalkaline chromite ore processing residue (COPR). This study compares Cr(VI) removal from COPR leachate and chromate solution by ZVI at high pH. Cr(VI) removal occurs more rapidly from the chromate solution than from COPR leachate. The reaction is first order with respect to both [Cr(VI)] and the iron surface area, but iron surface reactivity is lost to the reaction. Buffering pH downward produces little change in the removal rate or the specific capacity of iron until acidic conditions are reached. SEM and XPS analyses confirm that reaction products accumulate on the iron surface in both liquors, but that other surface precipitates also form in COPR leachate. Leachate from highly alkaline COPR contains Ca, Si, and Al that precipitate on the iron surface and significantly reduce the specific capacity of iron to reduce Cr(VI). This study suggests that, although Cr(VI) reduction by ZVI will occur at hyperalkaline pH, other solutes present in COPR leachate will limit the design life of a PRB

    Integrated all-photonic non-volatile multi-level memory

    No full text
    Implementing on-chip non-volatile photonic memories has been a long-term, yet elusive goal. Photonic data storage would dramatically improve performance in existing computing architectures1 by reducing the latencies associated with electrical memories2 and potentially eliminating optoelectronic conversions3. Furthermore, multi-level photonic memories with random access would allow for leveraging even greater computational capability4, 5, 6. However, photonic memories3, 7, 8, 9, 10 have thus far been volatile. Here, we demonstrate a robust, non-volatile, all-photonic memory based on phase-change materials. By using optical near-field effects, we realize bit storage of up to eight levels in a single device that readily switches between intermediate states. Our on-chip memory cells feature single-shot readout and switching energies as low as 13.4 pJ at speeds approaching 1 GHz. We show that individual memory elements can be addressed using a wavelength multiplexing scheme. Our multi-level, multi-bit devices provide a pathway towards eliminating the von Neumann bottleneck and portend a new paradigm in all-photonic memory and non-conventional computing.Deutsche Forschungsgemeinschaft (DFG)Engineering and Physical Sciences Research Council (EPSRC)JEOL UKClarendon FundKarlsruhe School of Optics and Photonics (KSOP)Stiftung der Deutschen Wirtschaft (sdw)John Fell FundDFGState of Baden-WürttembergDFG-Center for Functional Nanostructures (CFN
    corecore