368 research outputs found

    Global soil moisture bimodality in satellite observations and climate models

    Get PDF
    A new diagnostic metric based on soil moisture bimodality is developed in order to examine and compare soil moisture from satellite observations and Earth System Models. The methodology to derive this diagnostic is based on maximum likelihood estimator encoded into an iterative algorithm, which is applied to the soil moisture probability density function. This metric is applied to satellite data from the Advanced Microwave Scanning Radiometer for the Earth Observing System and global climate models data from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Results show high soil moisture bimodality in transitional climate areas and high latitudes, potentially associated with land-atmosphere feedback processes. When comparing satellite versus climate models, a clear difference in their soil moisture bimodality is observed, with systematically higher values in the case of CMIP5 models. These differences appear related to areas where land-atmospheric feedback may be overestimated in current climate models

    Positive representations of finite groups in Riesz spaces

    Full text link
    In this paper, which is part of a study of positive representations of locally compact groups in Banach lattices, we initiate the theory of positive representations of finite groups in Riesz spaces. If such a representation has only the zero subspace and possibly the space itself as invariant principal bands, then the space is Archimedean and finite dimensional. Various notions of irreducibility of a positive representation are introduced and, for a finite group acting positively in a space with sufficiently many projections, these are shown to be equal. We describe the finite dimensional positive Archimedean representations of a finite group and establish that, up to order equivalence, these are order direct sums, with unique multiplicities, of the order indecomposable positive representations naturally associated with transitive GG-spaces. Character theory is shown to break down for positive representations. Induction and systems of imprimitivity are introduced in an ordered context, where the multiplicity formulation of Frobenius reciprocity turns out not to hold.Comment: 23 pages. To appear in International Journal of Mathematic

    More to legs than meets the eye:Presence and function of pheromone compounds on heliothine moth legs

    Get PDF
    Chemical communication is ubiquitous in nature and chemical signals convey species‐specific messages. Despite their specificity, chemical signals may not be limited to only one function. Identifying alternative functions of chemical signals is key to understanding how chemical communication systems evolve. Here, we explored alternative functions of moth sex pheromone compounds. These chemicals are generally produced in, and emitted from, dedicated sex pheromone glands, but some have recently also been found on the insects' legs. We identified and quantified the chemicals in leg extracts of the three heliothine moth species Chloridea (Heliothis) virescens, Chloridea (Heliothis) subflexa and Helicoverpa armigera, compared their chemical profiles and explored the biological function of pheromone compounds on moth legs. Identical pheromone compounds were present on the legs in both sexes of all three species, with no striking interspecies or intersex differences. Surprisingly, we also found pheromone‐related acetate esters in leg extracts of species that lack acetate esters in their female sex pheromone. When we assessed gene expression levels in the leg tissue, we found known and putative pheromone‐biosynthesis genes expressed, which suggests that moth legs may be additional sites of pheromone production. To determine possible additional roles of the pheromone compounds on legs, we explored whether these may act as oviposition‐deterring signals, which does not seem to be the case. However, when we tested whether these chemicals have antimicrobial properties, we found that two pheromone compounds (16:Ald and 16:OH) reduce bacterial growth. Such an additional function of previously identified pheromone compounds likely coincides with additional selection pressures and, thus, should be considered in scenarios on the evolution of these signals

    Order parameters of some nematic p, p′ substituted tolanes as determined by polarized Raman scattering

    Get PDF
    The order parameters 〈P2〉 and 〈P4〉 of three nematic compounds have been determined by polarized Raman scattering. Results obtained with p‐pentyl‐p′‐cyanobiphenyl (5CB) agree well with published data. Next the influence of a strongly polar cyano end group on the order parameters was investigated. This was done by comparing two nematic liquid crystals of the tolane class, namely p‐heptyl‐p′‐cyanotolane and p‐heptyl‐p′‐methoxytolane, which have an almost identical geometrical shape. In spite of the difference in polarity hardly any difference in the order parameters 〈P2〉 and 〈P4〉 of both compounds could be observed. 〈P2〉 and 〈P4〉 of both tolanes show approximately mean field behavior in contrast to the low 〈P4〉 of 5CB

    Viscosities of the Gay-Berne nematic liquid crystal

    Full text link
    We present molecular dynamics simulation measurements of the viscosities of the Gay-Berne phenomenological model of liquid crystals in the nematic and isotropic phases. The temperature dependence of the rotational and shear viscosities, including the nonmonotonic behavior of one shear viscosity are in good agreement with experimental data. The bulk viscosities are significantly larger than the shear viscosities, again in agreement with experiment.Comment: 11 pages, 4 Postscript figures, Revte

    More to legs than meets the eye: Presence and function of pheromone compounds on heliothine moth legs

    Get PDF
    Chemical communication is ubiquitous in nature and chemical signals convey species-specific messages. Despite their specificity, chemical signals may not be limited to only one function. Identifying alternative functions of chemical signals is key to understanding how chemical communication systems evolve. Here, we explored alternative functions of moth sex pheromone compounds. These chemicals are generally produced in, and emitted from, dedicated sex pheromone glands, but some have recently also been found on the insects' legs. We identified and quantified the chemicals in leg extracts of the three heliothine moth species Chloridea (Heliothis) virescens, Chloridea (Heliothis) subflexa and Helicoverpa armigera, compared their chemical profiles and explored the biological function of pheromone compounds on moth legs. Identical pheromone compounds were present on the legs in both sexes of all three species, with no striking interspecies or intersex differences. Surprisingly, we also found pheromone-related acetate esters in leg extracts of species that lack acetate esters in their female sex pheromone. When we assessed gene expression levels in the leg tissue, we found known and putative pheromone-biosynthesis genes expressed, which suggests that moth legs may be additional sites of pheromone production. To determine possible additional roles of the pheromone compounds on legs, we explored whether these may act as oviposition-deterring signals, which does not seem to be the case. However, when we tested whether these chemicals have antimicrobial properties, we found that two pheromone compounds (16:Ald and 16:OH) reduce bacterial growth. Such an additional function of previously identified pheromone compounds likely coincides with additional selection pressures and, thus, should be considered in scenarios on the evolution of these signals

    Electric-field-induced nematic-cholesteric transition and 3-D director structures in homeotropic cells

    Full text link
    We study the phase diagram of director structures in cholesteric liquid crystals of negative dielectric anisotropy in homeotropic cells of thickness d which is smaller than the cholesteric pitch p. The basic control parameters are the frustration ratio d/p and the applied voltage U. Fluorescence Confocal Polarising Microscopy allows us to directly and unambiguously determine the 3-D director structures. The results are of importance for potential applications of the cholesteric structures, such as switchable gratings and eyewear with tunable transparency based.Comment: Will be published in Physical Review

    Electro-Mechanical Fredericks Effects in Nematic Gels

    Full text link
    The solid nematic equivalent of the Fredericks transition is found to depend on a critical field rather than a critical voltage as in the classical case. This arises because director anchoring is principally to the solid rubbery matrix of the nematic gel rather than to the sample surfaces. Moreover, above the threshold field, we find a competition between quartic (soft) and conventional harmonic elasticity which dictates the director response. By including a small degree of initial director misorientation, the calculated field variation of optical anisotropy agrees well with the conoscopy measurements of Chang et al (Phys.Rev.E56, 595, 1997) of the electro-optical response of nematic gels.Comment: Latex (revtex style), 5 EPS figures, submitted to PRE, corrections to discussion of fig.3, cosmetic change

    Structures and orientational transitions in thin films of tilted hexatic smectics

    Full text link
    We present detailed systematic studies of structural transformations in thin liquid crystal films with the smectic-C to hexatic phase transition. For the first time all possible structures reported in the literature are observed for one material (5 O.6) at the variation of temperature and thickness. In unusual modulated structures the equilibrium period of stripes is twice with respect to the domain size. We interpret these patterns in the frame work of phenomenological Landau type theory, as equilibrium phenomena produced by a natural geometric frustration in a system having spontaneous splay distortion.Comment: 7 pages, 6 figure
    corecore