30 research outputs found
The effect of temperature, gradient and load carriage on oxygen consumption, posture and gait characteristics
Purpose The purpose of this experiment was to evaluate the effect of load carriage in a range of temperatures to establish the interaction between cold exposure, the magnitude of change from unloaded to loaded walking and gradient. Methods Eleven participants (19-27 years) provided written informed consent before performing six randomly ordered walking trials in six temperatures (20°C, 10°C, 5°C, 0°C, -5°C and -10°C). Trials involved two unloaded walking bouts before and after loaded walking (18.2 kg) at 4 km.hrâ»Âč, on 0% and 10% gradients in 4 minute bouts. Results The change in absolute oxygen consumption (VÌOâ) from the first unloaded bout to loaded walking was similar across all six temperatures. When repeating the second unloaded bout, VÌOâ at both -5°C and-10°C was greater compared to the first. At -10°C, VÌOâ was increased from 1.60 ± 0.30 L.minâ»Âč to 1.89 ± 0.51 L.minâ»Âč. Regardless of temperature, gradient had a greater effect on VÌOâ and heart rate (HR) than backpack load. HR was unaffected by temperature. Stride length (SL) decreased with decreasing temperature but trunk forward lean was greater during cold exposure. Conclusion Decreased ambient temperature did not influence the magnitude of change in VÌOâ from unloaded to loaded walking. However, in cold temperatures, VÌOâ was significantly higher than in warm conditions. The increased VÌOâ in colder temperatures at the same exercise intensity is predicted to ultimately lead to earlier onset of fatigue and cessation of exercise. These results highlight the need to consider both appropriate clothing and fitness during cold exposure
Gene expression profiling of monkeypox virus-infected cells reveals novel interfaces for host-virus interactions
Monkeypox virus (MPV) is a zoonotic Orthopoxvirus and a potential biothreat agent that causes human disease with varying morbidity and mortality. Members of the Orthopoxvirus genus have been shown to suppress antiviral cell defenses, exploit host cell machinery, and delay infection-induced cell death. However, a comprehensive study of all host genes and virus-targeted host networks during infection is lacking. To better understand viral strategies adopted in manipulating routine host biology on global scale, we investigated the effect of MPV infection on Macaca mulatta kidney epithelial cells (MK2) using GeneChip rhesus macaque genome microarrays. Functional analysis of genes differentially expressed at 3 and 7 hours post infection showed distinctive regulation of canonical pathways and networks. While the majority of modulated histone-encoding genes exhibited sharp copy number increases, many of its transcription regulators were substantially suppressed; suggesting involvement of unknown viral factors in host histone expression. In agreement with known viral dependence on actin in motility, egress, and infection of adjacent cells, our results showed extensive regulation of genes usually involved in controlling actin expression dynamics. Similarly, a substantial ratio of genes contributing to cell cycle checkpoints exhibited concerted regulation that favors cell cycle progression in G1, S, G2 phases, but arrest cells in G2 phase and inhibits entry into mitosis. Moreover, the data showed that large number of infection-regulated genes is involved in molecular mechanisms characteristic of cancer canonical pathways. Interestingly, ten ion channels and transporters showed progressive suppression during the course of infection. Although the outcome of this unusual channel expression on cell osmotic homeostasis remains unknown, instability of cell osmotic balance and membrane potential has been implicated in intracellular pathogens egress. Our results highlight the role of histones, actin, cell cycle regulators, and ion channels in MPV infection, and propose these host functions as attractive research focal points in identifying novel drug intervention sites
International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci
The risk of posttraumatic stress disorder (PTSD) following trauma is heritable, but robust common variants have yet to be identified. In a multi-ethnic cohort including over 30,000 PTSD cases and 170,000 controls we conduct a genome-wide association study of PTSD. We demonstrate SNP-based heritability estimates of 5â20%, varying by sex. Three genome-wide significant loci are identified, 2 in European and 1 in African-ancestry analyses. Analyses stratified by sex implicate 3 additional loci in men. Along with other novel genes and non-coding RNAs, a Parkinsonâs disease gene involved in dopamine regulation, PARK2, is associated with PTSD. Finally, we demonstrate that polygenic risk for PTSD is significantly predictive of re-experiencing symptoms in the Million Veteran Program dataset, although specific loci did not replicate. These results demonstrate the role of genetic variation in the biology of risk for PTSD and highlight the necessity of conducting sex-stratified analyses and expanding GWAS beyond European ancestry populations. © 2019, This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply