388 research outputs found

    Clinical and Experimental Applications of NIR-LED Photobiomodulation

    Get PDF
    This review presents current research on the use of far-red to near-infrared (NIR) light treatment in various in vitro and in vivo models. Low-intensity light therapy, commonly referred to as “photobiomodulation,” uses light in the far-red to near-infrared region of the spectrum (630–1000 nm) and modulates numerous cellular functions. Positive effects of NIR–light-emitting diode (LED) light treatment include acceleration of wound healing, improved recovery from ischemic injury of the heart, and attenuated degeneration of injured optic nerves by improving mitochondrial energy metabolism and production. Various in vitro and in vivo models of mitochondrial dysfunction were treated with a variety of wavelengths of NIR-LED light. These studies were performed to determine the effect of NIR-LED light treatment on physiologic and pathologic processes. NIRLED light treatment stimulates the photoacceptor cytochrome c oxidase, resulting in increased energy metabolism and production. NIR-LED light treatment accelerates wound healing in ischemic rat and murine diabetic wound healing models, attenuates the retinotoxic effects of methanol-derived formic acid in rat models, and attenuates the developmental toxicity of dioxin in chicken embryos. Furthermore, NIR-LED light treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. The experimental results demonstrate that NIR-LED light treatment stimulates mitochondrial oxidative metabolism in vitro, and accelerates cell and tissue repair in vivo. NIR-LED light represents a novel, noninvasive, therapeutic intervention for the treatment of numerous diseases linked to mitochondrial dysfunction

    Diffusion of Zn into GaAs and AlGaAs from isothermal Liquid-phase epitaxy solutions

    Full text link
    In this work we present results of zinc diffusion in GaAs using the liquid phase epitaxy technique from liquid solutions of Ga‐As‐Zn and Ga‐As‐Al‐Zn. Using silicon‐doped n‐GaAs substrates, working at a diffusion temperature of 850 °C, and introducing a dopant concentration ranging 1018–1019 cm−3, the most important findings regarding the diffusion properties are as follows: (a) zinc concentration in the solid depends on the square root of zinc atomic fraction in the liquid; (b) the diffusion is dominated by the interstitial‐substitutional process; (c) the diffusivity D varies as about C3 in the form D=2.9×10−67C3.05; (d) aluminum plays the role of the catalyst of the diffusion process, if it is introduced in the liquid solution, since it is found that D varies as (γAsXlAs)−1; (e) the zinc interstitial is mainly doubly ionized (Zn++i); (f) the zinc diffusion coefficient in Al0.85 Ga0.15 As is about four times greater than in GaAs; (g) by means of all these results, it is possible to control zinc diffusion processes in order to obtain optimized depth junctions and doping levels in semiconductor device fabrication

    What Qualities Are Most Important to Making a Point of Care Test Desirable for Clinicians and Others Offering Sexually Transmitted Infection Testing?

    Get PDF
    To investigate the possible effects of different levels of attributes of a point-of-care test (POCT) on sexually transmitted infection (STI) professionals' decisions regarding an ideal POCT for STI(s).An online survey was designed based on a large-scale in-depth focus discussion study among STI experts and professionals. The last section of the survey "build your own POCT" was designed by employing the discrete choice experiment approach. Practicing clinicians from two venues, STI-related international conference attendees and U.S. STD clinic clinicians were invited to participate in the survey. Conditional logistical regression modeling was used for data analysis.Overall, 256 subjects took the online survey with 218 (85%) completing it. Most of the participants were STD clinic clinicians who already used some POCTs in their practice. "The time frame required" was identified as a major barrier that currently made it difficult to use STI POCTs. Chlamydia trachomatis was the organism chosen as the top priority for a new POCT, followed by a test that would diagnose early seroconversion for HIV, and a syphilis POCT. Without regard to organism type selected, sensitivity of 90-99% was always the most important attribute to be considered, followed by a cost of $20. However, when the test platform was prioritized for early HIV seroconversion or syphilis, sensitivity was still ranked as most important, but specificity was rated second most important.STI professionals preferred C. trachomatis as the top priority for a new POCT with sensitivity over 90%, low cost, and a very short completion time

    Analytical protocols for separation and electron microscopy of nanoparticles interacting with bacterial cells

    Get PDF
    An important step toward understanding interactions between nanoparticles (NPs) and bacteria is the ability to directly observe NPs interacting with bacterial cells. NPbacteria mixtures typical in nanomedicine, however, are not yet amendable for direct imaging in solution. Instead, evidence of NPcell interactions must be preserved in derivative (usually dried) samples to be subsequently revealed in high-resolution images, e.g., via scanning electron microscopy (SEM). Here, this concept is realized for a mixed suspension of model NPs and Staphylococcus aureus bacteria. First, protocols for analyzing the relative colloidal stabilities of NPs and bacteria are developed and validated based on systematic centrifugation and comparison of colony forming unit (CFU) counting and optical density (OD) measurements. Rate-dependence of centrifugation efficiency for each component suggests differential sedimentation at a specific predicted rate as an effective method for removing free NPs after co-incubation; the remaining fraction comprises bacteria with any associated NPs and can be examined, e.g., by SEM, for evidence of NPbacteria interactions. These analytical protocols, validated by systematic control experiments and high-resolution SEM imaging, should be generally applicable for investigating NPbacteria interactions.financial support from the following sources: grant SFRH/BPD/47693/2008 from the Portuguese Foundation for Science and Technology (FCT); FCT Strategic Project PEst-OE/EQB/LA0023/2013; project “BioHealth Biotechnology and Bioengineering approaches to improve health quality”, Ref. NORTE-07-0124-FEDER-000027, cofunded by the Programa Operacional Regional do Norte (ON.2−O Novo Norte), QREN, FEDER; project “Consolidating Research Expertise and Resources on Cellular and Molecular Biotechnology at CEB/IBB”, ref. FCOMP-01-0124-FEDER- 027462
    • 

    corecore