8 research outputs found

    The Microgravity Science Glovebox (MSG), a Resource for Gravity-Dependent Phenomena Research on the International Space Station (ISS)

    Get PDF
    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS) designed for gravity-dependent phenomena investigation handling. The MSG has been operating in the ISS US Laboratory Module since July 2002. The MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. The MSG's unique design provides two levels of containment to protect the ISS crew from hazardous operations. Research investigations operating inside the MSG are provided a large 255 liter work volume, 1000 watts of dc power via a versatile supply interface (120,28, plus or minus 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust' and Vacuum Resource 'Systems, and gaseous nitrogen supply. With these capabilities, the MSG is an ideal platform for research required to advance the technology readiness levels (TRL) needed for the Crew Exploration Vehicle and the Exploration Initiative. Areas of research that will benefit from investigations in the MSG include thermal management, fluid physics, spacecraft fire safety, materials science, combustion and reacting control systems, in situ fabrication and repair, and advanced life support technologies. This paper will provide a detailed explanation of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, an overview of investigations planning to operate in the MSG, and possible augmentations that can be added to-the MSG facility to further enhance the resources provided to investigations

    Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    No full text
    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting "real-time" and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed

    RNA aptamer to thrombin binds anion-binding exosite-2 and alters protease inhibition by heparin-binding serpins

    Get PDF
    AbstractWe studied the RNA aptamer Toggle-25/thrombin interaction during inhibition by antithrombin (AT), heparin cofactor II (HCII) and protein C inhibitor (PCI). Thrombin inhibition was reduced 3-fold by Toggle-25 for AT and HCII, but it was slightly enhanced for PCI. In the presence of glycosaminoglycans, AT and PCI had significantly reduced thrombin inhibition with Toggle-25, but it was only reduced 3-fold for HCII. This suggested that the primary effect of aptamer binding was through the heparin-binding site of thrombin, anion-binding exosite-2 (exosite-2). We localized the Toggle-25 binding site to Arg 98, Glu 169, Lys 174, Asp 175, Arg 245, and Lys 248 of exosite-2. We conclude that a RNA aptamer to thrombin exosite-2 might provide an effective clinical reagent to control heparin's anticoagulant action
    corecore