310 research outputs found

    What is the function of theoretical theatre ideas, given the content presented in Modern Theatre?

    Get PDF
    ABSTRACT In this work, I will look at the implications and history of theatre theory, then lay the ground work for what works will be used in this examination. Then, I look at the definition of form and content in theatrical terms and introduce the issue of this work, what is the function of Theoretical Theatre ideas, given the content presented in modern theatre? Then, I will talk about the work of Aristotle, giving brief biographical information and some of his theory on creating theatrical work, citing his work known as The Poetics. I will then look at the implications of this work on the modern play structures created based off of his ideals. After Aristotle, I will look ahead to Emile Zola, and discuss his work on the ideal genre of naturalism. After giving a full description of naturalism in his mind and biographical information, I will use Woyzeck by George BĂŒchner as an exemplar to better explain what naturalism is, in practice. Then, I will look at the implications of naturalism on modern realism, which is what is normally used in the modern theatre. Next, I will look to the work of Bertolt Brecht, first giving a biographical outline, then quickly going into his theory. I will use his play Mother Courage and Her Children to outline how his theory would look in practice. Lastly for him, I will look at the implications of his work on how we modernly conceptualize theatre in terms of form and content. Lastly, I will look at the work of Antonin Artaud, with a biographical exploration, then an exploration into his theoretical work The Theatre and Its Double. After this, as there isn’t a good exemplar of his work that is well-known, I will dive into the impact of his work on modern theatre directly. I will then conclude the essay with a refined glance at the work of each theorist and how each has shaped the modern theatre

    Quantitative in vivo and ex vivo confocal microscopy analysis of corneal cystine crystals in the Ctns−/− knockout mouse

    Get PDF
    PurposeThe purpose of this study was to assess the ability of quantitative in vivo confocal microscopy to characterize the natural history and detect changes in crystal volume in corneas from a novel animal model of cystinosis, the cystinosin (Ctns-/-) mouse.MethodsTwo Ctns−/− mice and one C57Bl/6 mouse were examined at each of the following time points: 2, 3, 5, 7, 10, 12, and 14 months of age. In vivo confocal microscopy scans were performed in 4 different regions of the cornea per eye. After, animals were sacrificed and cornea blocks evaluated for cell morphology using phalloidin and lymphocytic infiltration using CD45 antibodies by ex vivo confocal microscopy. Cystine crystal content in the cornea was measured by calculating the pixel intensity of the crystals divided by the stromal volume using Metamorph Image Processing Software.ResultsCorneal crystals were identified in Ctns−/− eyes beginning at 3 months of age and increased in density until 7–12 months, at which time animals begin to succumb to the disease and corneas become scarred and neovascularized. Older Ctns−/− mice (7 months and older) showed the presence of cell infiltrates that stained positively for CD45 associated with progressive keratocyte disruption. Finally, at 12 months of age, decreased cell density and endothelial distortion were detected.ConclusionsConfocal microscopy identified corneal crystals starting at 3 month old Ctns−/− eyes. Cystine crystals induce inflammatory and immune response with aging associated with loss of keratocyte and endothelial cells. These findings suggest that the Ctns−/− mouse can be used as a model for developing and evaluating potential alternative therapies for corneal cystinosis

    Pre-corneal tear film thickness in humans measured with a novel technique.

    Get PDF
    PurposeThe purpose of this work was to gather preliminary data in normals and dry eye subjects, using a new, non-invasive imaging platform to measure the thickness of pre-corneal tear film.MethodsHuman subjects were screened for dry eye and classified as dry or normal. Tear film thickness over the inferior paracentral cornea was measured using laser illumination and a complementary metal-oxide-semiconductor (CMOS) camera. A previously developed mathematical model was used to calculate the thickness of the tear film by applying the principle of spatial auto-correlation function (ACF).ResultsMean tear film thickness values (±SD) were 3.05 Όm (0.20) and 2.48 Όm (0.32) on the initial visit for normals (n=18) and dry eye subjects (n=22), respectively, and were significantly different (p<0.001, 2-sample t-test). Repeatability was good between visit 1 and 2 for normals (intraclass correlation coefficient [ICC]=0.935) and dry eye subjects (ICC=0.950). Tear film thickness increased above baseline for the dry eye subjects following viscous drop instillation and remained significantly elevated for up to approximately 32 min (n=20; p<0.05 until 32 min; general linear mixed model and Dunnett's tests).ConclusionsThis technique for imaging the ocular surface appears to provide tear thickness values in agreement with other non-invasive methods. Moreover, the technique can differentiate between normal and dry eye patient types

    Modulation of Corneal Fibroblast Contractility within Fibrillar Collagen Matrices

    Get PDF
    PURPOSE. To investigate the migratory and contractile behavior of isolated human corneal fibroblasts in fibrillar collagen matrices. METHODS. A telomerase-infected, extended-lifespan human corneal fibroblast cell line (HTK) was transfected by using a vector for enhanced green fluorescent protein (GFP)-α-actinin. Cells were plated at low density on top of or within 100-Όm-thick fibrillar collagen lattices. After 18 hours to 7 days, time-lapse imaging was performed. At each 1- to 3-minute interval, GFP and Nomarski differential interference contrast (DIC) images were acquired in rapid succession. Serum-containing (S+) medium was used initially for perfusion. After 2 hours, perfusion was switched to either serum-free (S-) or S+ medium containing the Rho-kinase inhibitor Y-27632 for 1 to 2 hours. Finally, perfusion was changed back to S+ medium for 1 hour. RESULTS. Two to 4 days after plating, many cells underwent spontaneous contraction and/or relaxation in S+ medium. A decrease in the distance between consecutive α-actinin-dense bodies along stress fibers was measured during contraction, and focal adhesion and matrix displacements correlated significantly. Removal of serum or inhibition of Rho-kinase induced cell body elongation and relaxation of matrix stress, as confirmed using finite element modeling. Rapid formation and extension of pseudopodia and filopodia were also observed, and transient tractional forces were generated by these extending processes. CONCLUSIONS. Cultured human corneal fibroblasts can undergo rapid changes in the subcellular pattern of force generation that are mediated, in part, by Rho-kinase. Sarcomeric shortening of stress fibers in contracting corneal fibroblasts is also demonstrated for the first time

    Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD)

    Get PDF
    This paper reviews our current understanding of age-related meibomian gland dysfunction (MGD) and the role of the nuclear receptor, peroxisome proliferator-activated receptor gamma (PPARÎł), in the regulation of meibomian gland function, meibocyte differentiation and lipid synthesis. The studies suggest that PPARÎł is a master regulator of meibocyte differentiation and function, whose expression and nuclear signaling coupled with meibocyte renewal is altered during aging, potentially leading to atrophy of the meibomian gland as seen in clinical MGD. Study of meibomian gland stem cells also suggest that there is a limited number of precursor meibocytes that provide progeny to the acini, that may be susceptible to exhaustion as occurs during aging and other environmental factors. Further study of pathways regulating PPARÎł expression and function as well as meibocyte stem cell maintenance may provide clues to establishing cellular and molecular mechanisms underlying MGD and the development of novel therapeutic strategies to treating this disease

    Evaluation of topical cysteamine therapy in the CTNS−/− knockout mouse using in vivo confocal microscopy

    Get PDF
    PurposeThe purpose of this study was to assess the ability of quantitative in vivo confocal microscopy (CM) to detect changes in cystine crystal volume in the cystinosisn (Ctns−/−)mouse cornea following topical cysteamine therapy.MethodsFifteen Ctns−/− mice were sequentially followed using in vivo CM from 3 to 10 months of age. In a second experiment, five mice receiving topical cysteamine eyedrops (0.55%) for 4 weeks were compared to five untreated mice. The volume of corneal cystine crystals was determined by thresholding and counting high intensity pixels in the in vivo CM scans and dividing by the stromal volume to calculate a crystal volume index (CVI).ResultsCorneal crystals progressively increased in density with age, reaching a peak density at 6–8 months and showing a 70 fold increase in CVI. Eyes treated with cysteamine drops showed significantly less crystal accumulation compared to control eyes (p<0.001) with only a 15% increase in treated eyes (p=ns) compared to 173% increase (p<0.04) for untreated eyes.ConclusionsMeasurement of CVI shows that there is a progressive increase in cystine crystal volume up to 8 months of age and that cysteamine eyedrops significantly inhibits progression in the Ctns−/− mouse. These findings are similar to those seen clinically in patients with cystinosis, and suggest that measurement of CVI in the Ctns−/− mouse may be used as a model to develop novel therapeutic strategies for treating corneal cystinosis

    Performance of the GLAS Space Lidar Receiver Through Its Seven-Year Space Mission

    Get PDF
    NASA s Ice, Cloud, and land Elevation Satellite (ICESat) mission [1,2] carrying the Geoscience Laser Altimeter System (GLAS) Instrument, was launched on January 12, 2003. The three lasers on ICESat have made a total of 1.98 billion laser shot measurements of the Earth s surface and atmosphere during its 17 science data collection campaigns over its seven year operating lifetime. ICESat completed its science mission after the last laser stopped operating in October 2009. The spacecraft was de-orbited on August 30, 2010. The GLAS instrument carried 3 diode-pumped Q-switched Nd:YAG lasers, which emitted 6-nsec wide pulses at 1064 and 532 nm at a 40-Hz rate. There are three lidar receiver channels, a 1064 nm surface altimetry channel, a 1064 nm cloud backscattering lidar channel, and a 532 nm cloud and aerosol backscattering lidar channel. The altimetry and cloud backscatter channels used Si avalanche photodiode (APD) operated in analog mode as in the Mars Global Surveyor s Mars Orbital Laser Altimeter [3,4]. GLAS also utilized a number of new technologies and techniques for space lidar, including passively Q-switched diode-pumped Nd:YAG lasers, a 1-m diameter telescope, a temperature tuned etalon optical bandpass filter, Si APD single photon counting detectors, 1 Gsample/sec waveform digitizers, ultra stable clock oscillators, and digital signal processing and detection algorithms [5]. A global position system (GPS) receiver was used to provide the spacecraft position and epoch times. The ICESat mission provided a unique opportunity to monitor the lidar component performance in the space environment over a multi-year time period. We performed a number of engineering tests periodically to monitor the lidar receiver performance, including receiver sensitivity, timing precision, detector dark noise, etc. A series of engineering tests were also performed after the end of the science mission to evaluate the performance of the spare detector, oscillator, waveform digitizer, and GPS receiver. An experiment was conducted which pointed GLAS to Venus to test the receiver sensitivity to star light and to verify GLAS bore sight with respect to the spacecraft coordinate system. These tests provided unique data to assess the degradation and the rate of change of these key lidar components due to space radiation and aging. They also helped to validate new techniques to operate and calibrate future space lidars

    Epithelial Migration and Non-adhesive Periderm Are Required for Digit Separation during Mammalian Development.

    Get PDF
    The fusion of digits or toes, syndactyly, can be part of complex syndromes, including van der Woude syndrome. A subset of van der Woude cases is caused by dominant-negative mutations in the epithelial transcription factor Grainyhead like-3 (GRHL3), and Grhl3-/-mice have soft-tissue syndactyly. Although impaired interdigital cell death of mesenchymal cells causes syndactyly in multiple genetic mutants, Grhl3-/- embryos had normal interdigital cell death, suggesting alternative mechanisms for syndactyly. We found that in digit separation, the overlying epidermis forms a migrating interdigital epithelial tongue (IET) when the epithelium invaginates to separate the digits. Normally, the non-adhesive surface periderm allows the IET to bifurcate as the digits separate. In contrast, in Grhl3-/- embryos, the IET moves normally between the digits but fails to bifurcate because of abnormal adhesion of the periderm. Our study identifies epidermal developmental processes required for digit separation

    A time‐varying effect model for examining group differences in trajectories of zero‐inflated count outcomes with applications in substance abuse research

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/136025/1/sim7177_am.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/136025/2/sim7177.pd
    • 

    corecore