11 research outputs found

    Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles

    Get PDF
    Background: Picoeukaryotes represent an important, yet poorly characterized component of marine phytoplankton. The recent genome availability for two species of Ostreococcus and Micromonas has led to the emergence of picophytoplankton comparative genomics. Sequencing has revealed many unexpected features about genome structure and led to several hypotheses on Ostreococcus biology and physiology. Despite the accumulation of genomic data, little is known about gene expression in eukaryotic picophytoplankton. Results: We have conducted a genome-wide analysis of gene expression in Ostreococcus tauri cells exposed to light/dark cycles (L/D). A Bayesian Fourier Clustering method was implemented to cluster rhythmic genes according to their expression waveform. In a single L/D condition nearly all expressed genes displayed rhythmic patterns of expression. Clusters of genes were associated with the main biological processes such as transcription in the nucleus and the organelles, photosynthesis, DNA replication and mitosis. Conclusions: Light/Dark time-dependent transcription of the genes involved in the main steps leading to protein synthesis (transcription basic machinery, ribosome biogenesis, translation and aminoacid synthesis) was observed, to an unprecedented extent in eukaryotes, suggesting a major input of transcriptional regulations in Ostreococcus. We propose that the diurnal co-regulation of genes involved in photoprotection, defence against oxidative stress and DNA repair might be an efficient mechanism, which protects cells against photo-damage thereby, contributing to the ability of O. tauri to grow under a wide range of light intensities

    The GENOTEND Oligochip: A tool for predicting beef quality

    No full text
    A European Commission Research Project (FOOD CT-2006-36241)absen

    Light-Dependent Regulation of Cell Division in Ostreococcus: Evidence for a Major Transcriptional Input1[W]

    No full text
    Cell division often occurs at specific times of the day in animal and photosynthetic organisms. Studies in unicellular photosynthetic algae, such as Chlamydomonas or Euglena, have shown that the photoperiodic control of cell division is mediated through the circadian clock. However, the underlying mechanisms remain unknown. We have studied the molecular basis of light-dependent control of cell division in the unicellular green alga Ostreococcus. We found that cell division obeys a circadian oscillator in Ostreococcus. We provide evidence suggesting that the clock may, at least in part, regulate directly cell division independently of the metabolism. Combined microarray and quantitative real-time reverse transcription-polymerase chain reaction analysis of the main core cell cycle gene expression revealed an extensive transcriptional regulation of cell division by the photoperiod in Ostreococcus. Finally, transcription of the main core cell cycle genes, including cyclins and cyclin-dependent kinases, was shown to be under circadian control in Ostreococcus, suggesting that these genes are potential targets of the circadian clock in the control of cell division

    The doubling potential of T lymphocytes allows clinical-grade production of a bank of genetically modified monoclonal T-cell populations

    No full text
    International audienceBackground aims. To produce an anti-leukemic effect after hematopoietic stem cell transplantation we have long considered the theoretical possibility of using banks of HLA-DP specific T-cell clones transduced with a suicide gene. For that application as for any others, a clonal strategy is constrained by the population doubling (PD) potential of T cells, which has been rarely explored or exploited. Methods. We used clinical-grade conditions and two donors who were homozygous and identical for all HLA-alleles except HLA-DP. After mixed lymphocyte culture and transduction, we obtained 14 HLA-DP–specific T-cell clones transduced with the HSV-TK suicide gene. Clones were then selected on the basis of their specificity and functional characteristics and evaluated for their doubling potential. Results. After these steps of selection the clone NAT-DP4[(TK)], specific for HLA-DPB1*04:01/04:02, which produced high levels of interferon-γ (IFNγ), tumor necrosis factor (TNF), interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF), was fully sequenced. It has two copies of the HSV-TK suicide transgene whose localizations were determined. Four billion NAT-DP4[(TK)] cells were frozen after 50 PDs. Thawed NAT-DP4[(TK)] cells retain the potential to undergo 50 additional PDs, a potential very far beyond that required to produce a biological effect. This PD potential was confirmed on 6/16 additional different T-cell clones. This type of well-defined clone can also support a second genetic modification with CAR constructs. Conclusion. The possibility of choosing rare donors and exploiting the natural proliferative potential of T lymphocytes may dramatically reduce the clinical and immunologic complexity of adoptive transfer protocols that rely on the use of third-party T-cell populations
    corecore