51 research outputs found

    The Relationship Between Gambling Behavior and Binge Drinking, Hard Drug Use, and Paying for Sex

    Full text link
    We examine the relationship between gambling behavior and other vices : hard drug use, binge drinking, and paying for sex. We utilize survey data from the National Longitudinal Study of Adolescent Health, a comprehensive survey of a representative sample of young adults in the US. We analyze survey data on the behavior of 6,145 respondents using linear probability modeling and a comprehensive set of control variables. Our results indicate that individuals who exhibit signs of problem gambling behavior are significantly more likely to use hard drugs, to binge drink, and to pay for sex. These findings, based on data collected on the general public, provide an interesting contribution to the gambling literature

    Acquired Resistance to BRAF Inhibitors Mediated by a RAF Kinase Switch in Melanoma Can Be Overcome by Cotargeting MEK and IGF-1R/PI3K

    Get PDF
    SummaryBRAF is an attractive target for melanoma drug development. However, resistance to BRAF inhibitors is a significant clinical challenge. We describe a model of resistance to BRAF inhibitors developed by chronic treatment of BRAFV600E melanoma cells with the BRAF inhibitor SB-590885; these cells are cross-resistant to other BRAF-selective inhibitors. Resistance involves flexible switching among the three RAF isoforms, underscoring the ability of melanoma cells to adapt to pharmacological challenges. IGF-1R/PI3K signaling was enhanced in resistant melanomas, and combined treatment with IGF-1R/PI3K and MEK inhibitors induced death of BRAF inhibitor-resistant cells. Increased IGF-1R and pAKT levels in a post-relapse human tumor sample are consistent with a role for IGF-1R/PI3K-dependent survival in the development of resistance to BRAF inhibitors

    The National Criticality Experiments Research Center and its role in support of advanced reactor design

    Get PDF
    The National Criticality Experiments Research Center (NCERC) located at the Nevada National Security Site (NNSS) in the Device Assembly Facility (DAF) and operated by Los Alamos National Laboratory (LANL) is the only general purpose critical experiments facility in the United States. Experiments from subcritical to critical and above prompt critical are carried out at NCERC on a regular basis. In recent years, NCERC has become more involved in experiments related to nuclear energy, including the Kilopower/KRUSTY demonstration and the recent Hypatia experiment. Multiple nuclear energy related projects are currently ongoing at NCERC. This paper discusses NCERC’s role in advanced reactor design and how that role may change in the future

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    Smaller total and subregional cerebellar volumes in posttraumatic stress disorder:a mega-analysis by the ENIGMA-PGC PTSD workgroup

    Get PDF
    Although the cerebellum contributes to higher-order cognitive and emotional functions relevant to posttraumatic stress disorder (PTSD), prior research on cerebellar volume in PTSD is scant, particularly when considering subregions that differentially map on to motor, cognitive, and affective functions. In a sample of 4215 adults (PTSD n = 1642; Control n = 2573) across 40 sites from the ENIGMA-PGC PTSD working group, we employed a new state-of-the-art deep-learning based approach for automatic cerebellar parcellation to obtain volumetric estimates for the total cerebellum and 28 subregions. Linear mixed effects models controlling for age, gender, intracranial volume, and site were used to compare cerebellum volumes in PTSD compared to healthy controls (88% trauma-exposed). PTSD was associated with significant grey and white matter reductions of the cerebellum. Compared to controls, people with PTSD demonstrated smaller total cerebellum volume, as well as reduced volume in subregions primarily within the posterior lobe (lobule VIIB, crus II), vermis (VI, VIII), flocculonodular lobe (lobule X), and corpus medullare (all p -FDR &lt; 0.05). Effects of PTSD on volume were consistent, and generally more robust, when examining symptom severity rather than diagnostic status. These findings implicate regionally specific cerebellar volumetric differences in the pathophysiology of PTSD. The cerebellum appears to play an important role in higher-order cognitive and emotional processes, far beyond its historical association with vestibulomotor function. Further examination of the cerebellum in trauma-related psychopathology will help to clarify how cerebellar structure and function may disrupt cognitive and affective processes at the center of translational models for PTSD.</p

    An ultrahot Neptune in the Neptune desert

    Get PDF
    About 1 out of 200 Sun-like stars has a planet with an orbital period shorter than one day: an ultrashort-period planet. All of the previously known ultrashort-period planets are either hot Jupiters, with sizes above 10 Earth radii (R⊕), or apparently rocky planets smaller than 2 R⊕. Such lack of planets of intermediate size (the ‘hot Neptune desert’) has been interpreted as the inability of low-mass planets to retain any hydrogen/helium (H/He) envelope in the face of strong stellar irradiation. Here we report the discovery of an ultrashort-period planet with a radius of 4.6 R⊕ and a mass of 29 M⊕, firmly in the hot Neptune desert. Data from the Transiting Exoplanet Survey Satellite revealed transits of the bright Sun-like star LTT 9779 every 0.79 days. The planet’s mean density is similar to that of Neptune, and according to thermal evolution models, it has a H/He-rich envelope constituting 9.0^(+2.7)_(−2.9)% of the total mass. With an equilibrium temperature around 2,000 K, it is unclear how this ‘ultrahot Neptune’ managed to retain such an envelope. Follow-up observations of the planet’s atmosphere to better understand its origin and physical nature will be facilitated by the star’s brightness (V_(mag) = 9.8)

    Trajectories of change in Mediterranean Holocene vegetation through classification of pollen data

    Get PDF
    © 2017 Springer-Verlag GmbH Germany, part of Springer Nature Quantification of vegetation cover from pollen analysis has been a goal of palynologists since the advent of the method in 1916 by the great Lennart von Post. Pollen-based research projects are becoming increasingly ambitious in scale, and the emergence of spatially extensive open-access datasets, advanced methods and computer power has facilitated sub-continental analysis of Holocene pollen data. This paper presents results of one such study, focussing on the Mediterranean basin. Pollen data from 105 fossil sequences have been extracted from the European Pollen database, harmonised by both taxonomy and chronologies, and subjected to a hierarchical agglomerative clustering method to synthesise the dataset into 16 main groupings. A particular focus of analysis was to describe the common transitions from one group to another to understand pathways of Holocene vegetation change in the Mediterranean. Two pollen-based indices of human impact (OJC: Oleaceae, Juglans, Castanea; API: anthropogenic pollen indicators) have been used to infer the degree of human modification of vegetation within each pollen grouping. Pollen-inferred cluster groups that are interpreted as representing more natural vegetation states show a restricted number of pathways of change. A set of cluster groups were identified that closely resemble anthropogenically-disturbed vegetation, and might be considered anthromes (anthopogenic biomes). These clusters show a very wide set of potential pathways, implying that all potential vegetation communities identified through this analysis have been altered in response to land exploitation and transformation by human societies in combination with other factors, such as climatic change. Future work to explain these ecosystem pathways will require developing complementary datasets from the social sciences and humanities (archaeology and historical sources), along with synthesis of the climatic records from the region

    Tele-education model for primary care providers to advance diabetes equity: Findings from Project ECHO Diabetes

    Get PDF
    IntroductionIn the US, many individuals with diabetes do not have consistent access to endocrinologists and therefore rely on primary care providers (PCPs) for their diabetes management. Project ECHO (Extension for Community Healthcare Outcomes) Diabetes, a tele-education model, was developed to empower PCPs to independently manage diabetes, including education on diabetes technology initiation and use, to bridge disparities in diabetes.MethodsPCPs (n=116) who participated in Project ECHO Diabetes and completed pre- and post-intervention surveys were included in this analysis. The survey was administered in California and Florida to participating PCPs via REDCap and paper surveys. This survey aimed to evaluate practice demographics, protocols with adult and pediatric T1D management, challenges, resources, and provider knowledge and confidence in diabetes management. Differences and statistical significance in pre- and post-intervention responses were evaluated via McNemar’s tests.ResultsPCPs reported improvement in all domains of diabetes education and management. From baseline, PCPs reported improvement in their confidence to serve as the T1D provider for their community (pre vs post: 43.8% vs 68.8%, p=0.005), manage insulin therapy (pre vs post: 62.8% vs 84.3%, p=0.002), and identify symptoms of diabetes distress (pre vs post: 62.8% vs 84.3%, p=0.002) post-intervention. Compared to pre-intervention, providers reported significant improvement in their confidence in all aspects of diabetes technology including prescribing technology (41.2% vs 68.6%, p=0.001), managing insulin pumps (41.2% vs 68.6%, p=0.001) and hybrid closed loop (10.2% vs 26.5%, p=0.033), and interpreting sensor data (41.2% vs 68.6%, p=0.001) post-intervention.DiscussionPCPs who participated in Project ECHO Diabetes reported increased confidence in diabetes management, with notable improvement in their ability to prescribe, manage, and troubleshoot diabetes technology. These data support the use of tele-education of PCPs to increase confidence in diabetes technology management as a feasible strategy to advance equity in diabetes management and outcomes

    The United States COVID-19 Forecast Hub dataset

    Get PDF
    Academic researchers, government agencies, industry groups, and individuals have produced forecasts at an unprecedented scale during the COVID-19 pandemic. To leverage these forecasts, the United States Centers for Disease Control and Prevention (CDC) partnered with an academic research lab at the University of Massachusetts Amherst to create the US COVID-19 Forecast Hub. Launched in April 2020, the Forecast Hub is a dataset with point and probabilistic forecasts of incident cases, incident hospitalizations, incident deaths, and cumulative deaths due to COVID-19 at county, state, and national, levels in the United States. Included forecasts represent a variety of modeling approaches, data sources, and assumptions regarding the spread of COVID-19. The goal of this dataset is to establish a standardized and comparable set of short-term forecasts from modeling teams. These data can be used to develop ensemble models, communicate forecasts to the public, create visualizations, compare models, and inform policies regarding COVID-19 mitigation. These open-source data are available via download from GitHub, through an online API, and through R packages

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore