11 research outputs found
Electrospinning as fascinating platform for teaching applied polymer science with safe and sustainable experiments
Electrospinning has been widely used as versatile technique to generate nanofibers of various materials. It is also helpful in teaching topics ranging from macromolecular chemistry to physics and safety to sustainability at various levels of difficulty and student involvement. Simple and safe hands-on experiments/manual assays can be realized for less than 20 euros to demonstrate polymer viscosity and nanofiber alignment and solubility. Students can further study (super)hydrophobicity and even upcycle packaging waste into useful filter materials, but also improve the electrospinning setup from a manual assay to an inexpensive Arduino-based 3D printed research platform. Alternatively, the latter can be used for teacher demonstrations of more challenging experiments that can also be easily done using a commercial syringe-pump
Cyanate Formation via Photolytic Splitting of Dinitrogen
[Image: see text] Light-driven N(2) cleavage into molecular nitrides is an attractive strategy for synthetic nitrogen fixation. However, suitable platforms are rare. Furthermore, the development of catalytic protocols via this elementary step suffers from poor understanding of N–N photosplitting within dinitrogen complexes, as well as of the thermochemical and kinetic framework for coupled follow-up chemistry. We here present a tungsten pincer platform, which undergoes fully reversible, thermal N(2) splitting and reverse nitride coupling, allowing for experimental derivation of thermodynamic and kinetic parameters of the N–N cleavage step. Selective N–N splitting was also obtained photolytically. DFT computations allocate the productive excitations within the {WNNW} core. Transient absorption spectroscopy shows ultrafast repopulation of the electronic ground state. Comparison with ground-state kinetics and resonance Raman data support a pathway for N–N photosplitting via a nonstatistically vibrationally excited ground state that benefits from vibronically coupled structural distortion of the core. Nitride carbonylation and release are demonstrated within a full synthetic cycle for trimethylsilylcyanate formation directly from N(2) and CO
Cyanate Formation via Photolytic Splitting of Dinitrogen
[Image: see text] Light-driven N(2) cleavage into molecular nitrides is an attractive strategy for synthetic nitrogen fixation. However, suitable platforms are rare. Furthermore, the development of catalytic protocols via this elementary step suffers from poor understanding of N–N photosplitting within dinitrogen complexes, as well as of the thermochemical and kinetic framework for coupled follow-up chemistry. We here present a tungsten pincer platform, which undergoes fully reversible, thermal N(2) splitting and reverse nitride coupling, allowing for experimental derivation of thermodynamic and kinetic parameters of the N–N cleavage step. Selective N–N splitting was also obtained photolytically. DFT computations allocate the productive excitations within the {WNNW} core. Transient absorption spectroscopy shows ultrafast repopulation of the electronic ground state. Comparison with ground-state kinetics and resonance Raman data support a pathway for N–N photosplitting via a nonstatistically vibrationally excited ground state that benefits from vibronically coupled structural distortion of the core. Nitride carbonylation and release are demonstrated within a full synthetic cycle for trimethylsilylcyanate formation directly from N(2) and CO
Molecular basis of the activity of the phytopathogen pectin methylesterase.
We provide a mechanism for the activity of pectin methylesterase (PME), the enzyme that catalyses the essential first step in bacterial invasion of plant tissues. The complexes formed in the crystal using specifically methylated pectins, together with kinetic measurements of directed mutants, provide clear insights at atomic resolution into the specificity and the processive action of the Erwinia chrysanthemi enzyme. Product complexes provide additional snapshots along the reaction coordinate. We previously revealed that PME is a novel aspartic-esterase possessing parallel β-helix architecture and now show that the two conserved aspartates are the nucleophile and general acid-base in the mechanism, respectively. Other conserved residues at the catalytic centre are shown to be essential for substrate binding or transition state stabilisation. The preferential binding of methylated sugar residues upstream of the catalytic site, and demethylated residues downstream, drives the enzyme along the pectin molecule and accounts for the sequential pattern of demethylation produced by both bacterial and plant PMEs