28 research outputs found

    A bias of Asparagine to Lysine mutations in SARS-CoV-2 outside the receptor binding domain affects protein flexibility

    Get PDF
    IntroductionCOVID-19 pandemic has been threatening public health and economic development worldwide for over two years. Compared with the original SARS-CoV-2 strain reported in 2019, the Omicron variant (B.1.1.529.1) is more transmissible. This variant has 34 mutations in its Spike protein, 15 of which are present in the Receptor Binding Domain (RBD), facilitating viral internalization via binding to the angiotensin-converting enzyme 2 (ACE2) receptor on endothelial cells as well as promoting increased immune evasion capacity.MethodsHerein we compared SARS-CoV-2 proteins (including ORF3a, ORF7, ORF8, Nucleoprotein (N), membrane protein (M) and Spike (S) proteins) from multiple ancestral strains. We included the currently designated original Variant of Concern (VOC) Omicron, its subsequent emerged variants BA.1, BA2, BA3, BA.4, BA.5, the two currently emerging variants BQ.1 and BBX.1, and compared these with the previously circulating VOCs Alpha, Beta, Gamma, and Delta, to better understand the nature and potential impact of Omicron specific mutations.ResultsOnly in Omicron and its subvariants, a bias toward an Asparagine to Lysine (N to K) mutation was evident within the Spike protein, including regions outside the RBD domain, while none of the regions outside the Spike protein domain were characterized by this mutational bias. Computational structural analysis revealed that three of these specific mutations located in the central core region, contribute to a preference for the alteration of conformations of the Spike protein. Several mutations in the RBD which have circulated across most Omicron subvariants were also analysed, and these showed more potential for immune escape.ConclusionThis study emphasizes the importance of understanding how specific N to K mutations outside of the RBD region affect SARS-CoV-2 conformational changes and the need for neutralizing antibodies for Omicron to target a subset of conformationally dependent B cell epitopes

    A novel small molecule inhibitor of human Drp1

    Get PDF
    Mitochondrial dynamin-related protein 1 (Drp1) is a large GTPase regulator of mitochondrial dynamics and is known to play an important role in numerous pathophysiological processes. Despite being the most widely used Drp1 inhibitor, the specificity of Mdivi-1 towards human Drp1 has not been definitively proven and there have been numerous issues reported with its use including off-target effects. In our hands Mdivi-1 showed varying binding affinities toward human Drp1, potentially impacted by compound aggregation. Herein, we sought to identify a novel small molecule inhibitor of Drp1. From an initial virtual screening, we identified DRP1i27 as a compound which directly bound to the human isoform 3 of Drp1 via surface plasmon resonance and microscale thermophoresis. Importantly, DRP1i27 was found to have a dose-dependent increase in the cellular networks of fused mitochondria but had no effect in Drp1 knock-out cells. Further analogues of this compound were identified and screened, though none displayed greater affinity to human Drp1 isoform 3 than DRP1i27. To date, this is the first small molecule inhibitor shown to directly bind to human Drp1

    TRIM16 Acts as an E3 Ubiquitin Ligase and Can Heterodimerize with Other TRIM Family Members

    Get PDF
    The TRIM family of proteins is distinguished by its tripartite motif (TRIM). Typically, TRIM proteins contain a RING finger domain, one or two B-box domains, a coiled-coil domain and the more variable C-terminal domains. TRIM16 does not have a RING domain but does harbour two B-box domains. Here we showed that TRIM16 homodimerized through its coiled-coil domain and heterodimerized with other TRIM family members; TRIM24, Promyelocytic leukaemia (PML) protein and Midline-1 (MID1). Although, TRIM16 has no classic RING domain, three-dimensional modelling of TRIM16 suggested that its B-box domains adopts RING-like folds leading to the hypothesis that TRIM16 acts as an ubiquitin ligase. Consistent with this hypothesis, we demonstrated that TRIM16, devoid of a classical RING domain had auto-polyubiquitination activity and acted as an E3 ubiquitin ligase in vivo and in vitro assays. Thus via its unique structure, TRIM16 possesses both heterodimerization function with other TRIM proteins and also has E3 ubiquitin ligase activity

    A mechanism for the extension and unfolding of parallel telomeric G-quadruplexes by human telomerase at single-molecule resolution

    Get PDF
    30 pags., 10 figs., 1 tab.Telomeric G-quadruplexes (G4) were long believed to form a protective structure at telomeres, preventing their extension by the ribonucleoprotein telomerase. Contrary to this belief, we have previously demonstrated that parallel-stranded conformations of telomeric G4 can be extended by human and ciliate telomerase. However, a mechanistic understanding of the interaction of telomerase with structured DNA remained elusive. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) microscopy and bulk-phase enzymology to propose a mechanism for the resolution and extension of parallel G4 by telomerase. Binding is initiated by the RNA template of telomerase interacting with the G-quadruplex; nucleotide addition then proceeds to the end of the RNA template. It is only through the large conformational change of translocation following synthesis that the G-quadruplex structure is completely unfolded to a linear product. Surprisingly, parallel G4 stabilization with either small molecule ligands or by chemical modification does not always inhibit G4 unfolding and extension by telomerase. These data reveal that telomerase is a parallel G-quadruplex resolvase.Cancer Council NSW RG 11-07 Tracy M Bryan, Cancer Institute NSW Aaron Lavel Moye, Australian Research Council FL140100027 Antoine M van Oijen, Ernest and Piroska Major Foundation Scott B Cohen, Natural Sciences and Engineering Research Council of Canada, Masad J Damha Centre of Excellence for Innovation in Chemistry PERCH-CIC Siritron Samosorn Research Unit of Natural Products and Organic Synthesis for Drug Discovery NPOS 405/2560 Siritron Samosorn Cancer Council NSW RG 16-10 Tracy M Brya

    Direct involvement of the TEN domain at the active site of human telomerase

    Get PDF
    Telomerase is a ribonucleoprotein that adds DNA to the ends of chromosomes. The catalytic protein subunit of telomerase (TERT) contains an N-terminal domain (TEN) that is important for activity and processivity. Here we describe a mutation in the TEN domain of human TERT that results in a greatly increased primer Kd, supporting a role for the TEN domain in DNA affinity. Measurement of enzyme kinetic parameters has revealed that this mutant enzyme is also defective in dNTP polymerization, particularly while copying position 51 of the RNA template. The catalytic defect is independent of the presence of binding interactions at the 5ā€²-region of the DNA primer, and is not a defect in translocation rate. These data suggest that the TEN domain is involved in conformational changes required to position the 3ā€²-end of the primer in the active site during nucleotide addition, a function which is distinct from the role of the TEN domain in providing DNA binding affinity

    Zanamivir-Resistant Influenza Viruses with a Novel Neuraminidase Mutationā–æ

    No full text
    The neuraminidase inhibitors zanamivir and oseltamivir are marketed for the treatment and prophylaxis of influenza and have been stockpiled by many countries for use in a pandemic. Although recent surveillance has identified a striking increase in the frequency of oseltamivir-resistant seasonal influenza A (H1N1) viruses in Europe, the United States, Oceania, and South Africa, to date there have been no reports of significant zanamivir resistance among influenza A (H1N1) viruses or any other human influenza viruses. We investigated the frequency of oseltamivir and zanamivir resistance in circulating seasonal influenza A (H1N1) viruses in Australasia and Southeast Asia. Analysis of 391 influenza A (H1N1) viruses isolated between 2006 and early 2008 from Australasia and Southeast Asia revealed nine viruses (2.3%) that demonstrated markedly reduced zanamivir susceptibility and contained a previously undescribed Gln136Lys (Q136K) neuraminidase mutation. The mutation had no effect on oseltamivir susceptibility but caused approximately a 300-fold and a 70-fold reduction in zanamivir and peramivir susceptibility, respectively. The role of the Q136K mutation in conferring zanamivir resistance was confirmed using reverse genetics. Interestingly, the mutation was not detected in the primary clinical specimens from which these mutant isolates were grown, suggesting that the resistant viruses either occurred in very low proportions in the primary clinical specimens or arose during MDCK cell culture passage. Compared to susceptible influenza A (H1N1) viruses, the Q136K mutant strains displayed greater viral fitness than the wild-type virus in MDCK cells but equivalent infectivity and transmissibility in a ferret model

    Phosphorylation of serine 779 in fibroblast growth factor receptor 1 and 2 by protein kinase CĻµ regulates ras/mitogen-activated protein kinase signaling and neuronal differentiation

    Full text link
    The FGF receptors (FGFRs) control a multitude of cellular processes both during development and in the adult through the initiation of signaling cascades that regulate proliferation, survival, and differentiation. Although FGFR tyrosine phosphorylation and the recruitment of Src homology 2 domain proteins have been widely described, we have previously shown that FGFR is also phosphorylated on Ser779 in response to ligand and binds the 14-3-3 family of phosphoserine/threonine-binding adaptor/scaffold proteins. However, whether this receptor phosphoserine mode of signaling is able to regulate specific signaling pathways and biological responses is unclear. Using PC12 pheochromocytoma cells and primary mouse bone marrow stromal cells as models for growth factor-regulated neuronal differentiation, we show that Ser779 in the cytoplasmic domains of FGFR1 and FGFR2 is required for the sustained activation of Ras and ERK but not for other FGFR phosphotyrosine pathways. The regulation of Ras and ERK signaling by Ser779 was critical not only for neuronal differentiation but also for cell survival under limiting growth factor concentrations. PKCĻµ can phosphorylate Ser779 in vitro, whereas overexpression of PKCĻµ results in constitutive Ser779 phosphorylation and enhanced PC12 cell differentiation. Furthermore, siRNA knockdown of PKCĻµ reduces both growth factor-induced Ser779 phosphorylation and neuronal differentiation. Our findings show that in addition to FGFR tyrosine phosphorylation, the phosphorylation of a conserved serine residue, Ser779, can quantitatively control Ras/MAPK signaling to promote specific cellular responses.Ana Lonic, Jason A. Powell, Yang Kong, Daniel Thomas, Jessica K. Holien, Nhan Truong, Michael W. Parker, and Mark A. Guthridg

    Amino acid sequence comparison of TRIM16 and MID1 and modeling of TRIM16 B-boxes.

    No full text
    <p>The conserved residues in the zinc binding regions are in bold underlined type and are; cysteine; C, histidine; H, alanine; A aspartic acid; D. (<b>A</b>) TRIM16 and MID1 share the zinc binding consensus sequence for B-box1. (B) TRIM16 and MID1 share the Zinc binding consensus sequence for B-box2. (C/D) Modeling of B-boxes reveals zinc binding capability. Superimposition of the alpha-carbon backbone of the B-boxes from the MDM1 NMR structure (purple) and the homology model of TRIM16 (blue-grey). These two structures overlay with an average root-mean-square deviation of 0.4 ƅ.</p

    TRIM16 can heterodimerize with MID1, TRIM24 and PML.

    No full text
    <p>(A) Schematic structures of TRIM proteins used in heterodimerization studies. (B) TRIM16 binds MID1. Co-transfection of MID1-GFP and TRIM16-myc-His in HEK293 cells and subsequent immunoprecipitation by anti-myc antibody and Western blot with anti-GFP antibody. (C) MID1 was pulled down via its GFP antibody and a Western blot was performed to detect TRIM16-myc-His in the immunoprecipitated protein complex. (D) Whole cell lysates (WCL) of HEK293 cells transfected with empty vector (EV) or TRIM16-GFP were immunopreciptated with anti-GFP antibody. An anti-PML antibody was used to detect PML as a binding partner of TRIM16. (E) Lysates containing both TRIM16-GFP and TRIM24-His proteins were immunopreciptated with anti-GFP antibody. Anti-His antibody was used to detect the presence of TRIM24 in the TRIM16-associated complex.</p

    B-boxes are required for TRIM16ā€™s E3 ligase activity.

    No full text
    <p>(A) TRIM16 <i>in vivo</i> polyubiquitination assay. In HEK293 cells, HA-Ub was co-transfected with various TRIM16-GFP domain deletion expression plasmids. The protein lysate was subjected to immunoprecipitation by GFP antibody, and subjected to Western blot and probed with anti-HA antibody for Ub (right panel) and anti-GFP antibody for TRIM16 (left and middle panel). Two exposure times are shown. GFP antibodies detect both un-ubiquitinated and polyubiquitinated forms of TRIM16. Polyubiquitinated smear is present in the sample transfected with wild-type TRIM16 and shown by anti-GFP and anti-HA antibodies. (B) <i>In vitro</i> ubiquitination assay with myc-His tagged TRIM16 together with a panel of E2 enzymes, showing activity with the UbcH5 family. (C) <i>In vitro</i> ubiquitination assay with full-length TRIM16, TRIM16 domain deletion mutants or empty vector showing extensive polyubiquitination with full-length TRIM16 as detected by Western blot with anti-myc antibodies. Numbers indicate protein size in kDa. (D) Recombinant TRIM16 (Abnova) was evaluated for E3 activity in the presence of recombinant E1, UbcH5b, and HA-Ub as indicated. The capacity to catalyse auto-ubiquitination <i>in vitro</i> was observed only in the presence of ZnCl<sub>2</sub> and ATP. Western Blot (lower panel) with TRIM16 antibody showed amount of TRIM16 protein in each lane.</p
    corecore