91 research outputs found

    Peer Review of Teaching Benchmark Portfolio - NRES/WATS/BIO 459/859: Limnology

    Get PDF
    Limnology (NRES/BIO/WATS 459/859) is an upper-division course taken primarily by Fisheries and Wildlife and Water Science majors in the College of Agricultural Sciences and Natural Resources (CASNR) at the University of Nebraska-Lincoln. Although the course enrollment is open to graduate students, none were enrolled in the year in which this portfolio was written. Learning outcomes focus on understanding the interdisciplinarity of limnological sciences, assessing anthropogenic impacts on lake ecosystems, learning basic limnological field techniques, and investigating and critically evaluating relevant, publicly available datasets. The course satisfies the “ACE 10” requirement for undergraduate students; students meet this requirement by completing a scholarly product. This benchmark portfolio critically assesses student learning towards interdisciplinarity and using data to investigate limnological inquiries based on the ACE 10 project. To assess interdisciplinarity achievement, I evaluated pre- and post-course assessments and performance on the Mid-Term and Final exams. I found students ability to describe limnological processes increased after taking the course, based primarily on word cloud analyses of pre- and post-course quiz answers. To assess data analytical achievement, I compared quality and rigor of data visualizations used in the ACE 10 project. I found a large breadth of achievement, suggesting that while any student may be capable of producing high-pass work, more background material may be necessary to help underachieving students with their performance. Based on assignment and course evaluations, students found this course challenging, but that active learning activities (e.g., ACE 10 project) helped them gain new skills. These evaluations and ongoing assessment of student learning will be used to continuously improve the course to facilitate future student experiences and learning

    Definitions of Water Quality: A Survey of Lake-Users of Water Quality-Compromised Lakes

    Get PDF
    Understanding and defining water quality is an important precursor for influencing pro-environmental behavior and accurately assessing potential outcomes of human–lake interactions. This study surveyed 82 lake-users in Nebraska regarding their definitions of water quality and the importance of various water quality features to determine if lake-users’ definitions align with complex and multi-faceted governmental and scientific definitions. Survey sites included two recreational reservoirs (e.g., boating and fishing), Holmes Lake (urban watershed) and Branched Oak Lake (agricultural watershed). The biological and chemical parameters are similar between the lakes and both lakes were listed as “impaired” on the Section 303(d) (United States Environmental Protection Agency,Washington, DC, USA) list of impaired waters of the US at the time of the surveys. The results of our survey suggest that the overwhelming majority of lake-users’ self-generated definitions of water quality did not include more than one feature of water quality found in the relevant policy and regulatory definitions and they focused primarily on water clarity. Further, when provided a list of specific water quality features, the participants rated all provided features of water quality as highly important. This suggests that the failure to include those features in a self-generated definition is not the consequence of perceiving that feature as low importance

    Impacts of human recreation on nutrient availability and periphyton abundance on the Niobrara River

    Get PDF
    In freshwater ecosystems, eutrophication can create many problems. Excess nutrients, like nitrogen or phosphorus, promote algal or cyanobacterial growth. This growth also leads to increased organic matter production and decomposition, a process that can reduce oxygen concentration in the water. When this happens, species diversity declines, transparency of the water declines, and anoxia may lead to fish kills . Of particular concern is the possibility of cyanobacteria blooms that create compounds toxic for humans. Many of the waters across Nebraska receive excessive nutrients from human activities, largely related to agriculture (Dickey 1982). However, there is one river, the Niobrara River, that is exceptional in Nebraska for its relatively undisturbed condition. Home to over 160 distinct plant and animal species, 76 miles of the Niobrara River are classified by the National Park Service (NPS) as a National Scenic River. This means that the river has a mostly undeveloped shoreline, is free-flowing (no dams) and most importantly, it is free of contamination. Despite the protection, the very reason that the Niobrara is so important culturally - because of its high water quality - is the very thing that might be threatened. Every year, nearly 80,000 visit the Niobrara River, with most of the activity happening during the summer (Learn). In certain areas of the Niobrara summer tourism is suspected to cause an influx of nutrients or cause physical disturbances, potentially harming the ecosystem. The following question was asked as we began our project; Do human recreational activities have a direct impact on the river ecosystem

    CAUGHT BETWEEN A ROCK AND A HARD MINERAL ENCRUSTATION: LONG-LIVED AQUATIC INSECTS ACCUMULATE CALCIUM CARBONATE DEPOSITS IN A MONTANE DESERT STREAM

    Get PDF
    Aquatic ecosystems overlying regions of limestone bedrock can feature active deposition of calcium carbonate in the form of travertine or tufa. Although most travertine deposits form a cement-like layer on stream substrates, mineral deposits can also form on benthic invertebrates. However, little is known about which taxa may be prone to calcium carbonate encrustation and which life history traits may make taxa more susceptible to becoming encrusted. Here we report the presence of calcium carbonate deposits on live insects collected from a montane stream in the Madrean Sky Islands (Huachuca Mountains) of Arizona between 2011 and 2013. Life history differences are examined between taxa with and without travertine deposits. Thirteen genera of aquatic insects were found with calcium carbonate deposits on the exoskeleton as well as 22 other genera, also encountered in the study stream, that have not previously been found with such deposits. Taxa with calcium carbonate encrustation had significantly longer-lived aquatic stages than those without encrustation. Furthermore, encrustation presence did not differ among aerial dispersal modes. These results suggest that the extent of calcium carbonate deposition on aquatic insects is primarily related to the length of time they are in the stream. Since mineral encrustation may reduce predation pressure and mobility, changes in patterns of travertine formation in these systems may have profound effects on ecological interactions. Los ecosistemas dulceacuícolas ubicados en regiones de roca caliza pueden contener depósitos de carbonato de calcio en forma de travertino o tufa. Aunque muchos depósitos de travertino se encuentran como una capa o manto de cemento sobre el fondo del arroyo, los depósitos también pueden formarse sobre los invertebrados bentónicos. Sin embargo, poco se sabe acerca de las especies que son propensas a los depósitos de travertino, o acerca de las características de estas especies que influyen en tal proceso. En este manuscrito reportamos la presencia de depósitos de travertino en insectos vivos y recolectados en un arroyo montañoso en el Archipiélago Madrense de Arizona durante 2011–2013 y examinamos las diferencias en las historias de vida entre taxones con o sin depósitos de travertino. Encontramos trece géneros de insectos acuáticos con travertino sobre el exoesqueleto y vientedos géneros sin travertino. Los taxones con travertino tienen una fase acuática significativamente más larga que los taxones sin travertino. Además, la presencia de travertino no difirió entre especies con distintas maneras de dispersión aérea. Estos resultados sugieren que las diferencias en los depósitos de travertino en insectos acuáticos ocurren principalmente a causa de la duración del período de vida acuática del insecto. Aunque los depósitos de travertino pueden reducir la presión por depredación y movilidad, cambios en los patrones de formación de travertino en estos sistemas pueden afectar profundamente las interacciones ecológicas

    Upwelling couples chemical and biological dynamics across the littoral and pelagic zones of Lake Tanganyika, East Africa

    Get PDF
    We studied the effects of upwelling on nutrient and phytoplankton dynamics in the pelagic and littoral zones of Lake Tanganyika near Kigoma, Tanzania. During the dry season of 2004, a rise in the thermocline and sudden drop in surface water temperatures indicated a substantial upwelling event. Increases in concentrations of nitrate, soluble reactive phosphorus, and silica in the surface waters occurred simultaneously after the temperature drop. Within days, chlorophyll a concentrations increased and remained elevated, while inorganic nutrient concentrations returned to preupwelling levels and organic nutrient concentrations peaked. We observed parallel temporal patterns of water temperature, nutrient concentrations, and phytoplankton chlorophyll in both the pelagic and the littoral zones, demonstrating that upwelling strongly affects the nearshore ecosystem as well as the pelagic zone. Concurrent records from 12 littoral sites indicated spatial variation in the timing, magnitude, and biological response to upwelling. There was no discernable latitudinal pattern in the timing of upwelling, suggesting that mixing did not result from a progressive wave. Our monitoring, as well as other multiyear studies, suggests that dry-season upwelling occurs during most years in northern Lake Tanganyika. The observed sensitivity of littoral nutrients and phytoplankton to upwelling suggests that reductions in upwelling due to global climate change could strongly affect the dynamics of the spectacular nearshore ecosystem of Lake Tanganyika, as has been proposed for the pelagic zone

    Harmful Algal Blooms Threaten the Health of Peri-Urban Fisher Communities: A Case Study in Kisumu Bay, Lake Victoria, Kenya

    Get PDF
    Available guidance to mitigate health risks from exposure to freshwater harmful algal blooms (HABs) is largely derived from temperate ecosystems. Yet in tropical ecosystems, HABs can occur year-round, and resource-dependent populations face multiple routes of exposure to toxic components. Along Winam Gulf, Lake Victoria, Kenya, fisher communities rely on lake water contaminated with microcystins (MCs) from HABs. In these peri-urban communities near Kisumu, we tested hypotheses that MCs exceed exposure guidelines across seasons, and persistent HABs present a chronic risk to fisher communities through ingestion with minimal water treatment and frequent, direct contact. We tested source waters at eleven communities across dry and rainy seasons from September 2015 through May 2016. We measured MCs, other metabolites, physicochemical parameters, chlorophyll-a, phytoplankton abundance and diversity, and fecal indicators. We then selected four communities for interviews about water sources, usage, and treatment. Greater than 30% of source water samples exceeded WHO drinking water guidelines for MCs (1 µg/L), and over 60% of source water samples exceeded USEPA guidelines for children and immunocompromised individuals. 50% of households reported a sole source of raw lake water for drinking and household use, with alternate sources including rain and boreholes. Household chlorination was the most widespread treatment utilized. At this tropical, eutrophic lake, HABs pose a year-round health risk for fisher communities in resource -limited settings. Community-based solutions and site-specific guidance for Kisumu Bay and similarly impacted regions is needed to address a chronic health exposure likely to increase in severity and duration with global climate change

    Impacts of algal blooms and microcystins in fish on small-scale fishers in Winam Gulf, Lake Victoria: implications for health and livelihood

    Get PDF
    Lake Victoria, bordered by Kenya, Tanzania, and Uganda, provides one of the largest freshwater fisheries in the world and supports millions in small-scale fishing communities. Historical environmental change, including population growth, nutrient loading, introduced invasive species, and rising temperatures, has resulted in eutrophication and persistent cyanobacterial harmful algae blooms (cyanoHABs) over recent decades, particularly in the shallower gulfs, bays, and inlets. CyanoHABs impact fisheries and food web dynamics and compromise food and water security for nearshore fisher populations. In this study, we examine the socialecological impact of freshwater blooms on fisher health in one of these eutrophic regions, Winam Gulf in Lake Victoria. CyanoHABs persist for months and produce microcystins and hepatotoxins at levels unsafe for human health. We assessed potential risk and contribution of microcystin exposure through fish consumption, in addition to exposure through water source, and conducted 400 fisher and 400 household surveys. Average microcystin concentrations exceeded the World Health Organization (WHO) guideline for drinking water consistently during the long dry season, and cyanobacterial cell counts surpassed WHO standards for recreational risk in 84% of samples. Hazard quotients for fish consumed by young children were 5 to 10 times higher than permissible levels. In addition, fishers chronicled profound ecosystem changes with direct impact on livelihood, fisheries, and water quality with 77.4% reporting a decline in profit or catch, 83.1% reporting adverse impacts of cyanoHABs on fish in the lake, and 98.2% reporting indicators of declining water quality in the lake overall. Through the application of a social-ecological lens to a public health model, we identified spheres of influence that modify how fishers experience HABs related stressors and risks to provide a starting point at which to identify sustainable strategies to improve food and water security and livelihood for the millions in nearshore communities

    Nutrient dynamics and phytoplankton resource limitation in a deep tropical mountain lake

    Get PDF
    Managing lake eutrophication requires a clear understanding of resource limitation of primary productivity, yet historically research on this subject has focused on temperate lakes. In 2010, we quantified several metrics of resource limitation in Lake Atitlán, Guatemala, Central America’s deepest tropical mountain lake that has recently experienced extensive phytoplankton blooms. In contrast to many temperate lakes, Lake Atitlán did not show a relationship between total phosphorus (TP) and chlorophyll a (Chl-a) concentrations. Average molar ratios of total nitrogen (TN) to TP decreased from 16.4 to 4.5 between stratified and mixing conditions. During our monitoring period, Tropical Storm Agatha landed on Guatemala, washing in sediment from the watershed, and concentrations of P temporarily increased in the lake by >60%. Initial experimental bioassays indicated phytoplankton growth was colimited by N and P prior to the storm, whereas post-storm assays suggested limitation by P and trace elements. Compared to previous years, Limnoraphis robusta, an N-fixing cyanobacterium, increased in abundance earlier in the year; however, there was no bloom event during our sampling period. Experimental studies indicated that nitrogenase activity was limited by P and iron availability while light was secondarily limiting of overall phytoplankton growth. This study illustrates the potential for baseline nutrient and phytoplankton growth dynamics to substantially differ for tropical lake systems from conventionally studied temperate lakes and the potential for “pulse” events (e.g., tropical storms) to alter those dynamics

    LakeMetabolizer: An R package for estimating lake metabolism from free-water oxygen using diverse statistical models

    Get PDF
    Metabolism is a fundamental process in ecosystems that crosses multiple scales of organization from individual organisms to whole ecosystems. To improve sharing and reuse of published metabolism models, we developed LakeMetabolizer, an R package for estimating lake metabolism from in situ time series of dissolved oxygen, water temperature, and, optionally, additional environmental variables. LakeMetabolizer implements 5 different metabolism models with diverse statistical underpinnings: bookkeeping, ordinary least squares, maximum likelihood, Kalman filter, and Bayesian. Each of these 5 metabolism models can be combined with 1 of 7 models for computing the coefficient of gas exchange across the air–water interface (k). LakeMetabolizer also features a variety of supporting functions that compute conversions and implement calculations commonly applied to raw data prior to estimating metabolism (e.g., oxygen saturation and optical conversion models). These tools have been organized into an R package that contains example data, example use-cases, and function documentation. The release package version is available on the Comprehensive R Archive Network (CRAN), and the full open-source GPL-licensed code is freely available for examination and extension online. With this unified, open-source, and freely available package, we hope to improve access and facilitate the application of metabolism in studies and management of lentic ecosystems
    corecore