140 research outputs found

    Progress and challenges in the computational prediction of gene function using networks

    Get PDF

    “Guilt by Association” Is the Exception Rather Than the Rule in Gene Networks

    Get PDF
    Gene networks are commonly interpreted as encoding functional information in their connections. An extensively validated principle called guilt by association states that genes which are associated or interacting are more likely to share function. Guilt by association provides the central top-down principle for analyzing gene networks in functional terms or assessing their quality in encoding functional information. In this work, we show that functional information within gene networks is typically concentrated in only a very few interactions whose properties cannot be reliably related to the rest of the network. In effect, the apparent encoding of function within networks has been largely driven by outliers whose behaviour cannot even be generalized to individual genes, let alone to the network at large. While experimentalist-driven analysis of interactions may use prior expert knowledge to focus on the small fraction of critically important data, large-scale computational analyses have typically assumed that high-performance cross-validation in a network is due to a generalizable encoding of function. Because we find that gene function is not systemically encoded in networks, but dependent on specific and critical interactions, we conclude it is necessary to focus on the details of how networks encode function and what information computational analyses use to extract functional meaning. We explore a number of consequences of this and find that network structure itself provides clues as to which connections are critical and that systemic properties, such as scale-free-like behaviour, do not map onto the functional connectivity within networks

    Determination of Longitudinal Stability and Control Characteristics from Free-Flight Model Tests with Results at Transonic Speeds for Three Airplane Configurations

    Get PDF
    A test technique and data analysis method has been developed for determining the longitudinal aerodynamic characteristics from free-flight tests of rocket-propelled models. The technique makes use of accelerometers and an angle-of-attack indicator to permit instantaneous measurements of lift, drag, and pitching moments. The data, obtained during transient oscillations resulting from control-surface disturbances, are analyzed by essentially nonlinear direct methods (such as cross plots of the variation of lift coefficient with angle of attack) and by linear indirect methods by using the equations of motion for a transient oscillation. The analysis procedure has been set forth in some detail and the feasibility of the method has been demonstrated by data measured through the transonic speed range on several airplane configurations. It was shown that the flight conditions and dynamic similitude factors for the tests described were reasonably close to typical full-scale airplane conditions

    Defining the extent of gene function using ROC curvature

    Get PDF
    MOTIVATION: Interactions between proteins help us understand how genes are functionally related and how they contribute to phenotypes. Experiments provide imperfect "ground truth" information about a small subset of potential interactions in a specific biological context, which can then be extended to the whole genome across different contexts, such as conditions, tissues, or species, through machine learning methods. However, evaluating the performance of these methods remains a critical challenge. Here, we propose to evaluate the generalizability of gene characterizations through the shape of performance curves. RESULTS: We identify Functional Equivalence Classes (FECs), subsets of annotated and unannotated genes that jointly drive performance, by assessing the presence of straight lines in ROC curves built from gene-centric prediction tasks, such as function or interaction predictions. FECs are widespread across data types and methods, they can be used to evaluate the extent and context-specificity of functional annotations in a data-driven manner. For example, FECs suggest that B cell markers can be decomposed into shared primary markers (10 to 50 genes), and tissue-specific secondary markers (100 to 500 genes). In addition, FECs suggest the existence of functional modules that span a wide range of the genome, with marker sets spanning at most 5% of the genome and data-driven extensions of Gene Ontology sets spanning up to 40% of the genome. Simple to assess visually and statistically, the identification of FECs in performance curves paves the way for novel functional characterization and increased robustness in the definition of functional gene sets. AVAILABILITY: Code for analyses and figures is available at https://github.com/yexilein/pyroc. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    Defining the extent of gene function using ROC curvature

    Get PDF
    Machine learning in genomics plays a key role in leveraging high-throughput data, but assessing the generalizability of performance has been a persistent challenge. Here, we propose to evaluate the generalizability of gene characterizations through the shape of performance curves. We identify Functional Equivalence Classes (FECs), uniform subsets of annotated and unannotated genes that jointly drive performance, by assessing the presence of straight lines in ROC curves. FECs are widespread across modalities and methods, and can be used to evaluate the extent and contextspecificity of functional annotations in a data-driven manner. For example, FECs suggest that B cell markers can be decomposed into shared primary markers (10 to 50 genes), and tissue-specific secondary markers (100 to 500genes). In addition, FECs are compatible with a wide range of functional encodings, with marker sets spanning at most 5% of the genome and data-driven extensions of Gene Ontology sets spanning up to 40% of the genome. Simple to assess visually and statistically, the identification of FECs in performance curves paves the way for novel functional characterization and increased robustness in analysi

    A Meta-Analytic Single-Cell Atlas of Mouse Bone Marrow Hematopoietic Development

    Get PDF
    The clinical importance of the hematopoietic system makes it one of the most heavily studied lineages in all of biology. A clear understanding of the cell types and functional programs during hematopoietic development is central to research in aging, cancer, and infectious diseases. Known cell types are traditionally identified by the expression of proteins on the surface of the cells. Stem and progenitor cells defined based on these markers are assigned functions based on their lineage potential. The rapid growth of single cell RNA sequencing technologies (scRNAseq) provides a new modality for evaluating the cellular and functional landscape of hematopoietic stem and progenitor cells. The popularity of this technology among hematopoiesis researchers enables us to conduct a robust meta-analysis of mouse bone marrow scRNAseq data. Using over 300,000 cells across 12 datasets, we evaluate the classification and function of cell types based on discrete clustering, in silico FACS sorting, and a continuous trajectory. We identify replicable signatures that define cell types based on genes and known cellular functions. Additionally, we evaluate the conservation of signatures associated with erythroid and monocyte lineage development across species using co-expression networks. The co-expression networks predict the effectiveness of the signature at identifying erythroid and monocyte cells in zebrafish and human scRNAseq data. Together, this analysis provides a robust reference, particularly marker genes and functional annotations, for future experiments in hematopoietic development

    Is it time to change the reference genome?

    Get PDF
    The use of the human reference genome has shaped methods and data across modern genomics. This has offered many benefits while creating a few constraints. In the following opinion, we outline the history, properties, and pitfalls of the current human reference genome. In a few illustrative analyses, we focus on its use for variant-calling, highlighting its nearness to a 'type specimen'. We suggest that switching to a consensus reference would offer important advantages over the continued use of the current reference with few disadvantages

    A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships

    Get PDF
    BACKGROUND: Chromatin contacts are essential for gene-expression regulation; however, obtaining a high-resolution genome-wide chromatin contact map is still prohibitively expensive owing to large genome sizes and the quadratic scale of pairwise data. Chromosome conformation capture (3C)-based methods such as Hi-C have been extensively used to obtain chromatin contacts. However, since the sparsity of these maps increases with an increase in genomic distance between contacts, long-range or trans-chromatin contacts are especially challenging to sample. RESULTS: Here, we create a high-density reference genome-wide chromatin contact map using a meta-analytic approach. We integrate 3600 human, 6700 mouse, and 500 fly Hi-C experiments to create species-specific meta-Hi-C chromatin contact maps with 304 billion, 193 billion, and 19 billion contacts in respective species. We validate that meta-Hi-C contact maps are uniquely powered to capture functional chromatin contacts in both cis and trans. We find that while individual dataset Hi-C networks are largely unable to predict any long-range coexpression (median 0.54 AUC), meta-Hi-C networks perform comparably in both cis and trans (0.65 AUC vs 0.64 AUC). Similarly, for long-range expression quantitative trait loci (eQTL), meta-Hi-C contacts outperform all individual Hi-C experiments, providing an improvement over the conventionally used linear genomic distance-based association. Assessing between species, we find patterns of chromatin contact conservation in both cis and trans and strong associations with coexpression even in species for which Hi-C data is lacking. CONCLUSIONS: We have generated an integrated chromatin interaction network which complements a large number of methodological and analytic approaches focused on improved specificity or interpretation. This high-depth "super-experiment" is surprisingly powerful in capturing long-range functional relationships of chromatin interactions, which are now able to predict coexpression, eQTLs, and cross-species relationships. The meta-Hi-C networks are available at https://labshare.cshl.edu/shares/gillislab/resource/HiC/
    • …
    corecore