140 research outputs found
A Random Access Protocol for Pilot Allocation in Crowded Massive MIMO Systems
The Massive MIMO (multiple-input multiple-output) technology has great
potential to manage the rapid growth of wireless data traffic. Massive MIMO
achieves tremendous spectral efficiency by spatial multiplexing of many tens of
user equipments (UEs). These gains are only achieved in practice if many more
UEs can connect efficiently to the network than today. As the number of UEs
increases, while each UE intermittently accesses the network, the random access
functionality becomes essential to share the limited number of pilots among the
UEs. In this paper, we revisit the random access problem in the Massive MIMO
context and develop a reengineered protocol, termed strongest-user collision
resolution (SUCRe). An accessing UE asks for a dedicated pilot by sending an
uncoordinated random access pilot, with a risk that other UEs send the same
pilot. The favorable propagation of Massive MIMO channels is utilized to enable
distributed collision detection at each UE, thereby determining the strength of
the contenders' signals and deciding to repeat the pilot if the UE judges that
its signal at the receiver is the strongest. The SUCRe protocol resolves the
vast majority of all pilot collisions in crowded urban scenarios and continues
to admit UEs efficiently in overloaded networks.Comment: To appear in IEEE Transactions on Wireless Communications, 16 pages,
10 figures. This is reproducible research with simulation code available at
https://github.com/emilbjornson/sucre-protoco
Random Pilot and Data Access in Massive MIMO for Machine-type Communications
A massive MIMO system, represented by a base station with hundreds of
antennas, is capable of spatially multiplexing many devices and thus naturally
suited to serve dense crowds of wireless devices in emerging applications, such
as machine-type communications. Crowd scenarios pose new challenges in the
pilot-based acquisition of channel state information and call for pilot access
protocols that match the intermittent pattern of device activity. A joint pilot
assignment and data transmission protocol based on random access is proposed in
this paper for the uplink of a massive MIMO system. The protocol relies on the
averaging across multiple transmission slots of the pilot collision events that
result from the random access process. We derive new uplink sum rate
expressions that take pilot collisions, intermittent device activity, and
interference into account. Simplified bounds are obtained and used to optimize
the device activation probability and pilot length. A performance analysis
indicates how performance scales as a function of the number of antennas and
the transmission slot duration
Random Access Protocols for Massive MIMO
5G wireless networks are expected to support new services with stringent
requirements on data rates, latency and reliability. One novel feature is the
ability to serve a dense crowd of devices, calling for radically new ways of
accessing the network. This is the case in machine-type communications, but
also in urban environments and hotspots. In those use cases, the high number of
devices and the relatively short channel coherence interval do not allow
per-device allocation of orthogonal pilot sequences. This article motivates the
need for random access by the devices to pilot sequences used for channel
estimation, and shows that Massive MIMO is a main enabler to achieve fast
access with high data rates, and delay-tolerant access with different data rate
levels. Three pilot access protocols along with data transmission protocols are
described, fulfilling different requirements of 5G services
NORMA-Gene: A simple and robust method for qPCR normalization based on target gene data
<p>Abstract</p> <p>Background</p> <p>Normalization of target gene expression, measured by real-time quantitative PCR (qPCR), is a requirement for reducing experimental bias and thereby improving data quality. The currently used normalization approach is based on using one or more reference genes. Yet, this approach extends the experimental work load and suffers from assumptions that may be difficult to meet and to validate.</p> <p>Results</p> <p>We developed a data driven normalization algorithm (NORMA-Gene). An analysis of the performance of NORMA-Gene compared to reference gene normalization on artificially generated data-sets showed that the NORMA-Gene normalization yielded more precise results under a large range of parameters tested. Furthermore, when tested on three very different real qPCR data-sets NORMA-Gene was shown to be best at reducing variance due to experimental bias in all three data-sets compared to normalization based on the use of reference gene(s).</p> <p>Conclusions</p> <p>Here we present the NORMA-Gene algorithm that is applicable to all biological and biomedical qPCR studies, especially those that are based on a limited number of assayed genes. The method is based on a data-driven normalization and is useful for as little as five target genes comprising the data-set. NORMA-Gene does not require the identification and validation of reference genes allowing researchers to focus their efforts on studying target genes of biological relevance.</p
A comparison of low temperature biology of Pieris rapae from Ontario, Canada, and Yakutia, Far Eastern Russia
Low temperatures limit the distribution and abundance of ectotherms. However, many insects can survive low temperatures by employing one of two cold tolerance strategies: freeze avoidance or freeze tolerance. Very few species can employ both strategies, but those that do provide a rare opportunity to study the mechanisms that differentiate freeze tolerance and freeze avoidance. We showed that overwintering pupae of the cabbage white butterfly Pieris rapae can be freeze tolerant or freeze avoidant. A population of P. rapae in northeastern Russia (Yakutsk) froze at c. -9.3 °C and were freeze-tolerant in 2002-2003 when overwintered outside. However, P. rapae from both Yakutsk and southern Canada (London) acclimated to milder laboratory conditions in 2014 and 2017 froze at lower temperatures (\u3c -20 °C) and were freeze-avoidant. Summer-collected P. rapae larvae (collected in Yakutsk in 2016) were partially freeze-tolerant, and decreased the temperature at which they froze in response to starvation at mild low temperatures (4 °C) and repeated partial freezing events. By comparing similarly-acclimated P. rapae pupae from both populations, we identified molecules that may facilitate low temperature tolerance, including the hemolymph ice-binding molecules and several potential low molecular weight cryoprotectants. Pieris rapae from Yakutsk exhibited high physiological plasticity, accumulating cryoprotectants and almost doubling their hemolymph osmolality when supercooled to -15 °C for two weeks, while London P. rapae population exhibited minimal plasticity. We hypothesize that physiological plasticity is an important adaptation to extreme low temperatures (i.e. in Yakutsk) and may facilitate the transition between freeze avoidance and freeze tolerance
Increased Intracranial Pressure during Hemodialysis in a Patient with Anoxic Brain Injury
Dialysis disequilibrium syndrome (DDS) is a serious neurological complication of hemodialysis, and patients with acute brain injury are at increased risk. We report a case of DDS leading to intracranial hypertension in a patient with anoxic brain injury and discuss the subsequent dialysis strategy. A 13-year-old girl was admitted after prolonged resuscitation from cardiac arrest. Computed tomography (CT) revealed an inferior vena cava aneurysm and multiple pulmonary emboli as the likely cause. An intracranial pressure (ICP) monitor was inserted, and, on day 3, continuous renal replacement therapy (CRRT) was initiated due to acute kidney injury, during which the patient developed severe intracranial hypertension. CT of the brain showed diffuse cerebral edema. CRRT was discontinued, sedation was increased, and hypertonic saline was administered, upon which ICP normalized. Due to persistent hyperkalemia and overhydration, ultrafiltration and intermittent hemodialysis were performed separately on day 4 with a small dialyzer, low blood and dialysate flow, and high dialysate sodium content. During subsequent treatments, isolated ultrafiltration was well tolerated, whereas hemodialysis was associated with increased ICP necessitating frequent pauses or early cessation of dialysis. In patients at risk of DDS, hemodialysis should be performed with utmost care and continuous monitoring of ICP should be considered
Molecular Responses to Thermal and Osmotic Stress in Arctic Intertidal Mussels (Mytilus edulis): The Limits of Resilience.
Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‱) and low salinities (15‱) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‱, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‱, 15‱ and 5‱) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world
- …