15 research outputs found

    Two Frequenins in Drosophila: unveiling the evolutionary history of an unusual Neuronal Calcium Sensor (NCS) duplication

    Get PDF
    13 pages, 4 figures, 1 table, 5 additional files.[Background] Drosophila Frequenin (Frq), the homolog of the mammalian Neuronal Calcium Sensor-1 (NCS-1), is a high affinity calcium-binding protein with ubiquitous expression in the nervous system. This protein has an important role in the regulation of neurotransmitter release per synapse, axonal growth and bouton formation. In D. melanogaster, Frequenin is encoded by two genes (frq1 and frq2), a very unexpected feature in the Frq/NCS-1 subfamily. These genes are located in tandem in the same genomic region, and their products are 95% identical in their amino acid sequence, clearly indicating their recent origin by gene duplication. Here, we have investigated the factors involved in this unusual feature by examining the molecular evolution of the two frq genes in Drosophila and the evolutionary dynamics of NCS family in a large set of bilaterian species.[Results] Surprisingly, we have found no amino acid replacements fixed across the twelve Drosophila species surveyed. In contrast, synonymous substitutions have been prevalent in the evolution of the coding region of frq1 and frq2, indicating the presence of strong functional constraints following gene duplication. Despite that, we have detected that significant evolutionary rate acceleration had occurred in Frq1 in early times from the duplication, in which positive selection (likely promoting functional diversification) had probably an important role. The analysis of sequence conservation and DNA topology at the non-coding regions of both genes has allowed the identification of DNA regions candidates to be cis-regulatory elements. The results reveal a possible mechanism of regulatory diversification between frq1 and frq2.[Conclusions] The presence of two Frequenins in Drosophila and the rapid accumulation of amino acid substitutions after gene duplication are very unusual features in the evolution of the Frq/NCS-1 subfamily. Here we show that the action of positive selection in concordance with some extent of regulatory diversification might explain these findings. Selected amino acid substitutions in Frq1 likely contributed to the functional divergence between the two duplicates, which, in turn, should have diverged in their regulation by Ecdysone-induced early genes.Research was funded by grants BFU 2006-10180 and the European Research Network of Excellence MYORES ref.: CE-511978.Peer reviewe

    Análisis experimental de estructura aeroespaciales fabricadas mediante impresión 3D

    Get PDF
    Jornada de Innovación Docente: resultados y estrategias, celebrada el 22 de junio de 2016 en la Universidad Carlos III de Madrid, donde se presentan algunos de los proyectos de innovación docente del curso 2015-2016

    Multiple roles for frequenin/NCS-1 in synaptic function and development

    No full text
    The calcium-binding protein frequenin (Frq), discovered in the fruit fly Drosophila, and its mammalian homologue neuronal calcium sensor 1 (NCS-1) have been reported to affect several aspects of synaptic transmission, including basal levels of neurotransmission and short- and long-term synaptic plasticities. However, discrepant reports leave doubts about the functional roles of these conserved proteins. In this review, we attempt to resolve some of these seemingly contradictory reports. We discuss how stimulation protocols, sources of calcium (voltage-gated channels versus internal stores), and expression patterns (presynaptic versus postsynaptic) of Frq may result in the activation of various protein targets, leading to different synaptic effects. In addition, the potential interactions of Frq's C-terminal and N-terminal domains with other proteins are discussed. Frq also has a role in regulating neurite outgrowth, axonal regeneration, and synaptic development. We examine whether the effects of Frq on neurotransmitter release and neurite outgrowth are distinct or interrelated through homeostatic mechanisms. Learning and memory are affected by manipulations of Frq probably through changes in synaptic transmission and neurite outgrowth, raising the possibility that Frq may be implicated in human pathological conditions, including schizophrenia, bipolar disorder, and X-linked mental retardation. © Springer Science+Business Media, LLC 2012.Peer Reviewe

    Chronic and acute alterations in the functional levels of Frequenins 1 and 2 reveal their roles in synaptic transmission and axon terminal morphology

    No full text
    Frequenin (Frq) and its mammalian homologue, neuronal calcium sensor 1 (NCS-1), are important calcium-binding proteins which enhance neurotransmitter release and facilitation. Here, we report the discovery of a second Frq-encoding gene (frq2) in Drosophila. The temporal and spatial expression patterns of the two genes are very similar, and the proteins they encode, Frq1 and Frq2, are 95% identical in amino acid sequence. Frq1 is more abundant than Frq2, and is most highly expressed in larva. Loss-of-function phenotypes were studied using dominant negative peptides to prevent Frq target binding, RNAi to reduce gene transcription, or both methods. To discriminate chronic from acute loss-of-function effects, we compared the effects of transgenic expression and forward-filling the dominant-negative peptide into presynaptic terminals. In both cases, a 70% reduction in quantal content per bouton occurred, demonstrating that this trait does not result from homeostatic adaptations of the synapse during development. The chronic treatment also produced more synaptic boutons from MNSNb/d-Is motorneurons, but fewer active zones per bouton. By contrast, excess-of-function conditions yielded a 1.4- to 2-fold increase in quantal content and fewer boutons in the same motorneuron. These synaptic effects resulted in behavioural changes in the Buridan locomotion assay, showing that walking speed is dependent on Frq activity in the nervous system. All the effects were identical for both Frqs, and consistent with excess- and loss-of-function genotypes. We conclude that Frqs have two distinct functions: one in neurotransmission, regulating the probability of release per synapse, and another in axonal growth and bouton formation. © The Authors (2007).Peer Reviewe

    Frequenin/NCS-1 and the Ca2+-channel α1-subunit co-regulate synaptic transmission and nerve-terminal growth

    No full text
    Drosophila Frequenin (Frq) and its mammalian and worm homologue, NCS-1, are Ca2+-binding proteins involved in neurotransmission. Using site-specific recombination in Drosophila, we created two deletions that removed the entire frq1 gene and part of the frq2 gene, resulting in no detectable Frq protein. Frq-null mutants were viable, but had defects in larval locomotion, deficient synaptic transmission, impaired Ca2+ entry and enhanced nerve-terminal growth. The impaired Ca2+ entry was sufficient to account for reduced neurotransmitter release. We hypothesized that Frq either modulates Ca2+ channels, or that it regulates the PI4Kβ pathway as described in other organisms. To determine whether Frq interacts with PI4K. with consequent effects on Ca2+ channels, we first characterized a PI4Kβ-null mutant and found that PI4Kβ was dispensable for synaptic transmission and nerve-terminal growth. Frq gain-of-function phenotypes remained present in a PI4Kβ-null background. We conclude that the effects of Frq are not due to an interaction with PI4Kβ. Using flies that were trans-heterozygous for a null frq allele and a null cacophony (encoding the α1-subunit of voltage-gated Ca2+ channels) allele, we show a synergistic effect between these proteins in neurotransmitter release. Gain-of-function Frq phenotypes were rescued by a hypomorphic cacophony mutation. Overall, Frq modulates Ca2+ entry through a functional interaction with the voltage-gated Ca2+-channel subunit; this interaction regulates neurotransmission and nerveterminal growth.Peer Reviewe

    The guanine-exchange factor Ric8a binds to the Ca2+ sensor NCS-1 to regulate synapse number and neurotransmitter release

    No full text
    © 2014. Published by The Company of Biologists Ltd. The conserved Ca2+-binding protein Frequenin (homolog of the mammalian NCS-1, neural calcium sensor) is involved in pathologies that result from abnormal synapse number and probability of neurotransmitter release per synapse. Both synaptic features are likely to be co-regulated but the intervening mechanisms remain poorly understood. We show here that Drosophila Ric8a (a homolog of mammalian synembryn, which is also known as Ric8a), a receptor-independent activator of G protein complexes, binds to Frq2 but not to the virtually identical homolog Frq1. Based on crystallographic data on Frq2 and site-directed mutagenesis on Frq1, the differential amino acids R94 and T138 account for this specificity. Human NCS-1 and Ric8a reproduce the binding and maintain the structural requirements at these key positions. Drosophila Ric8a and Gas regulate synapse number and neurotransmitter release, and both are functionally linked to Frq2. Frq2 negatively regulates Ric8a to control synapse number. However, the regulation of neurotransmitter release by Ric8a is independent of Frq2 binding. Thus, the antagonistic regulation of these two synaptic properties shares a common pathway, Frq2- Ric8a-Gαs, which diverges downstream. These mechanisms expose the Frq2-Ric8a interacting surface as a potential pharmacological target for NCS-1-related diseases and provide key data towards the corresponding drug design.Peer Reviewe
    corecore