14 research outputs found

    NKT-like cells reveal higher than T lymphocytes expression of cellular protective proteins HSP70 and SOD2 and comparably increased expression of SIRT1 in the oldest seniors

    Get PDF
    Introduction. NKT-like cells are “non-classical”, “CD1d-independent” NKT cells which represent highly differentiated, conventional T lymphocytes coexpressing several NK (natural killer) associated receptors. They are effector lymphocytes of both innate and adaptive immunity and simultaneously regulatory cells of the adaptive immune system. They reveal large granular lymphocyte morphology and can mediate both MHC-restricted and MHC-unrestricted cytotoxicity, secrete many cytokines and modulate Th1 immune responses. The aim of our study was to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in NKT-like cells compared to T lymphocytes during ageing.Material and methods. The study involved three groups of participants: the oldest seniors (n = 25; aged over 85; mean age 88 ± 0.5 ys), the old (n = 30; aged under 85; mean age 76 ± 0.9 ys) and the young (n = 32; mean age 21 ± 0.3 ys). Whole blood samples were analyzed by flow cytometry to assess the NKT-like (CD3+CD56+) and T (CD3+) cell populations.Results. The group of the oldest seniors differed from the other age groups by much higher percentage of both NKT-like cells and T lymphocytes expressing SIRT1, HSP70 and SOD2. The expression of these proteins correlated positively with the age of the participants. Interestingly, the significantly higher expression of the studied protective proteins; i.e. HSP70 and SOD2 was found in CD3+CD56+ cells compared to CD3+ lymphocytes and this phenomenon concerned all the studied age groups. These differences were not significant regarding the expression of SIRT1; however, the same tendency was noticeable.Conclusions. The analysis of CD3+ and CD3+CD56+ lymphocytes showed the increase in the number of NKT-like cells and decreased number of T cells in the process of ageing. The increased expression of cellular protective proteins SIRT1, HSP70 and SOD2 in NKT-like and T-lymphocytes of the oldest seniors seems to correspond to longevity and the observed correlations may suggest the involvement of these proteins in establishing cellular homeostasis specific for healthy ageing. Furthermore, the higher expression of the protective proteins in NKT-like cells compared to T lymphocytes may indicate their particular role in the interplay between innate and adaptive immunity responses during the process of ageing

    Treatment of Graves’ disease with methimazole in children alters the proliferation of Treg cells and CD3+ T lymphocytes

    Get PDF
    Almost all cases of hyperthyroidism in children result from Graves’ disease (GD). Recent studies have confirmed a significant role of T regulatory cells (Tregs) in the development of autoimmune diseases. However, the interactions between T cell responses and Treg proliferation in GD are still poorly understood. The aim of this study was to assess the proliferation of Treg cells (Tregs) and CD3+ T lymphocytes isolated from 50 children with GD before and after treatment with the thyreostatic drug methimazole (MMI). The proliferation rates, measured by methyl-3H-thymidyne incorporation, of CD3+ cells and Tregs stimulated with mitogen phorbol 12-myristate 13-acetate (PMA) were compared with those of unstimulated cells. The proliferation rates of both PMA-stimulated and unstimulated CD3+ cells prior to treatment with MMI were significantly higher than after treatment. Simultaneously, the proliferation rates of both PMA-stimulated and unstimulated Tregs were significantly lower before MMI treatment. Moreover, we observed higher cell proliferation rates of unstimulated and PMA-stimulated Tregs before the initiation of MMI therapy and after treatment in patients who had no relapse of hyperthyroidism. There was a positive correlation between the CD3+ cells proliferation rate before MMI treatment and fT3, as well as fT4 concentration in peripheral blood. The proliferation rates of CD3+ T cells before and after MMI treatment positively correlated with the TSI index. Thus, children suffering from Graves’ disease presented lower Tregs proliferative potential compared with CD3+ T cells. Cocultures of CD3+ T cells and Tregs showed that Tregs were not capable of efficiently inhibiting the proliferation of CD3+ T cells in GD patients. Conclusions. MMI treatment reduced the proliferative activity of CD3+ T cells in pediatric GD patients and increased the proliferation rate of Tregs. We suggest that Treg cells that are partly dysfunctional in GD disease are probably suppressed by CD3+ T cells and that methimazole exerts some immunomodulatory effects. (Folia Histochemica et Cytobiologica 2014, Vol. 52, No. 1, 69–77

    Radon intercomparison tests – Katowice, 2016

    Get PDF
    At the beginning of the year 2016, the representatives of the Polish Radon Centre decided to organize profi ciency tests (PTs) for measurements of radon gas and radon decay products in the air, involving radon monitors and laboratory passive techniques. The Silesian Centre for Environmental Radioactivity of the Central Mining Institute (GIG), Katowice, became responsible for the organization of the PT exercises. The main reason to choose that location was the radon chamber in GIG with a volume of 17 m3, the biggest one in Poland. Accordingly, 13 participants from Poland plus one participant from Germany expressed their interest. The participants were invited to inform the organizers about what types of monitors and methods they would like to check during the tests. On this basis, the GIG team prepared the proposal for the schedule of exercises, such as the required level(s) of radon concentrations, the number and periods of tests, proposed potential alpha energy concentration (PAEC) levels and also the overall period of PT. The PT activity was performed between 6th and 17th June 2016. After assessment of the results, the agreement between radon monitors and other measurement methods was confi rmed. In the case of PAEC monitors and methods of measurements, the results of PT exercises were consistent and confi rmed the accuracy of the calibration procedures used by the participants. The results of the PAEC PTs will be published elsewhere; in this paper, only the results of radon intercomparison are described

    Cholesterol - friend or enemy of brain?

    No full text
    Udział cholesterolu w patogenezie choroby Alzheimera jest zagadnieniem jak dotąd niewyjaśnionym. Wydaje się, że jest on jednym z czynników promujących odkładanie beta-amyloidu, a tym samym - tworzenie "płytek starczych". Jednak istnieją fakty, które sugerują ochronną rolę tego sterolu w rozwoju zmian chorobowych w tym schorzeniu.Cholesterol is blamed for causing Alzheimer’s disease. Yet little is known about the relationship between Alzheimer disease and cholesterol. It has been documented that cholesterol is required for beta amyloid formation. On the other hand it has been proven that cholesterol acts as protector of brain against beta amyloid deposits

    CD56bright cells respond to stimulation until very advanced age revealing increased expression of cellular protective proteins SIRT1, HSP70 and SOD2

    No full text
    Abstract Background NK cells are cytotoxic lymphocytes of innate immunity composed of: cytotoxic CD56dim and immunoregulatory CD56bright cells. The study aimed to analyze the expression of cellular protective proteins: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in CD56dim and CD56bright NK cells of the young, seniors aged under 85 (‘the old’) and seniors aged over 85 (‘the oldest’). We studied both non-stimulated NK cells and cells stimulated by IL-2, LPS or PMA with ionomycin. The expression level of proinflammatory cytokines TNF and IFN-γ was also assessed in NK cell subsets and some relationships between the studied parameters were analyzed. Results CD56bright cells showed sensitivity to most of the applied stimulatory agents until very advanced age in regards to the expression of SIRT1 and intracellular HSP70. On the contrary, CD56dim cells, sensitive to stimulation by most of the stimulatory agents in the young and the old, in the oldest lost this sensitivity and presented rather high, constant expression of SIRT1 and HSP70, resistant to further stimulation. With reference to SOD2 expression, CD56dim cells were insensitive to stimulation in the young, but their sensitivity increased with ageing. CD56bright cells were sensitive to most of the applied agents in the young and the old but in the oldest they responded to all of the stimulatory agents used in the study. Similarly, both NK cell subsets were sensitive to stimulation until very advanced age in regards to the expression of TNF and IFN-γ. Conclusions CD56bright cells maintained sensitivity to stimulation until very advanced age presenting also an increased expression of SIRT1 and HSP70. CD56dim cells showed a constantly increased expression of these cellular protective proteins in the oldest, insensitive for further stimulation. The oldest, however, did not reveal an increased level of SOD2 expression, but it was significantly elevated in both NK cell subsets after stimulation. The pattern of expression of the studied cellular protective proteins in ageing process revealed the adaptation of NK cells to stress response in the oldest seniors which might accompany the immunosenescence and contribute to the long lifespan of this group of the elderly

    NK cells of the oldest seniors represent constant and resistant to stimulation high expression of cellular protective proteins SIRT1 and HSP70

    No full text
    Abstract Background Natural killer cells (NK cells) are cytotoxic lymphocytes of innate immunity that reveal some immunoregulatory properties, however, their role in the process of ageing is not completely understood. The study aimed to analyze the expression of proteins involved in cellular stress response: sirtuin 1 (SIRT1), heat shock protein 70 (HSP70) and manganese superoxide dismutase (SOD2) in human NK cells with reference to the process of ageing. Non-stimulated and stimulated with IL-2, LPS or PMA with ionomycin cells originated from peripheral blood samples of: seniors aged over 85 (‘the oldest’; n = 25; 88.5 ± 0.5 years, mean ± SEM), seniors aged under 85 (‘the old’; n = 30; 75.6 ± 0.9 years) and the young (n = 31; 20.9 ± 0.3 years). The relationships between the levels of expression of cellular protective proteins in the studied population were also analyzed. The concentrations of carbonyl groups and 8-isoprostanes, markers of oxidative stress, in both stimulated and non-stimulated cultured NK cells were measured to assess the level of the oxidative stress in the cells. Results The oldest seniors varied from the other age groups by significantly higher expression of SIRT1 and HSP70 both in non-stimulated and stimulated NK cells. These cells also appeared to be resistant to further stimulations with IL-2, LPS or PMA with ionomycin. Highly positive correlations between SIRT1 and intracellular HSP70 in both stimulated and non-stimulated NK cells were observed. SOD2 presented low expression in non-stimulated cells, whereas its sensitivity to stimulation increased with age of donors. High positive correlations between SOD2 and surface HSP70 were observed. We found that the markers of oxidative stress in NK cells did not change with ageing. Conclusions The oldest seniors revealed well developed adaptive stress response in NK cells with increased, constant levels of SIRT1 and intracellular HSP70. They presented also very high positive correlations between expression of these cellular protective proteins both in stimulated and non-stimulated cells. These phenomena may contribute to the long lifespan of this group of elderly. Interestingly, in NK cells SOD2 revealed a distinct role in cellular stress response since it showed sensitivity to stimulation increasing with age of participants. These observations provide novel data concerning the role of NK cells in the process of ageing
    corecore