106 research outputs found
Scattering and inverse-scattering problems in a continuously varying elastic medium.
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Earth and Planetary Sciences, 1969.Bibliography: leaves 88-90.Ph.D
Metalloproteinase regulation improves in vitro generation of efficacious platelets from mouse embryonic stem cells
Embryonic stem cells (ESCs) could potentially compensate for the lack of blood platelets available for use in transfusions. Here, we describe a new method for generating mouse ESC-derived platelets (ESPs) that can contribute to hemostasis in vivo. Flow cytometric sorting of cells from embryoid bodies on day 6 demonstrated that c-Kit+ integrin αIIb (αIIb)+ cells, but not CD31+ cells or vascular endothelial cadherin+ cells, are capable of megakaryopoiesis and the release of platelet-like structures by day 12. αIIbβ3-expressing ESPs exhibited ectodomain shedding of glycoprotein (GP)Ibα, GPV, and GPVI, but not αIIbβ3 or GPIbβ. ESPs showed impaired αIIbβ3 activation and integrin-mediated actin reorganization, critical events for normal platelet function. However, the administration of metalloproteinase inhibitors GM6001 or TAPI-1 during differentiation increased the expression of GPIbα, improving both thrombogenesis in vitro and posttransfusion recovery in vivo. Thus, the regulation of metalloproteinases in culture could be useful for obtaining high-quality, efficacious ESPs as an alternative platelet source for transfusions
Factor IX San Dimas. Substitution of glutamine for Arg-4 in the propeptide leads to incomplete gamma-carboxylation and altered phospholipid binding properties.
DNA sequence analysis of the Factor IX gene from a hemophilia B patient (98% Factor IX antigen; less than 0.01 unit/ml clotting activity) has identified a point mutation in exon II. A guanine to adenine transition causes the substitution of a glutamine codon for an arginine codon at -4 in the propeptide of Factor IX. This variant, termed Factor IX San Dimas, circulates in the plasma as proFactor IX with a mutant 18-amino acid propeptide still attached. Like Factor IX Cambridge (Arg-1----Ser), Factor IX San Dimas is unable to express metal-induced epitopes recognized by conformation-specific polyclonal antibodies. Amino acid analysis of the alkaline hydrolysate indicates that purified Factor IX San Dimas contains a reduced number of gamma-carboxyglutamyl residues compared to Factor IX. However, this protein undergoes metal-induced quenching of the intrinsic fluorescence. In addition, Factor IX San Dimas is unable to interact with phospholipid vesicles. The absence of coagulant activity in Factor IX San Dimas can be attributed to impaired calcium-induced conformational changes and loss in the ability to bind phospholipid vesicles in the presence of calcium ions
Advanced Nuclear Power Systems to Mitigate Climate Change
Abstract Fossil fuels currently supply about 80% of humankind's primary energy. Given the imperatives of climate change, pollution, energy security and dwindling supplies, and enormous technical, logistical and economic challenges of scaling up coal or gas power plants with carbon capture and storage to sequester all that carbon, we are faced with the necessity of a nearly complete transformation of the world's energy systems. Objective analyses of the inherent constraints on wind, solar, and other less-mature renewable energy technologies inevitably demonstrate that they will fall far short of meeting today's energy demands, let alone the certain increased demands of the future. Nuclear power, however, is capable of providing all the carbon-free energy that mankind requires, although the prospect of such a massive deployment raises questions of uranium shortages, increased energy and environmental impacts from mining and fuel enrichment, and so on. These potential roadblocks can all be dispensed with, however, through the use of fast neutron reactors and fuel recycling. The Integral Fast Reactor (IFR), developed at U.S. national laboratories in the latter years of the last century, can economically and cleanly supply all the energy the world needs without any further mining or enrichment of uranium. Instead of utilizing a mere 0.6% of the potential energy in uranium, IFRs capture all of it. Capable of utilizing troublesome waste products already at hand, IFRs can solve the thorny spent fuel problem while powering the planet with carbon-free energy for nearly a millennium before any more uranium mining would even have to be considered. Designed from the outset for unparalleled safety and proliferation resistance, with all major features proven out at the engineering scale, this technology is unrivaled in its ability to solve the most difficult energy problems facing humanity in the 21 st century
Gramene database in 2010: updates and extensions
Now in its 10th year, the Gramene database (http://www.gramene.org) has grown from its primary focus on rice, the first fully-sequenced grass genome, to become a resource for major model and crop plants including Arabidopsis, Brachypodium, maize, sorghum, poplar and grape in addition to several species of rice. Gramene began with the addition of an Ensembl genome browser and has expanded in the last decade to become a robust resource for plant genomics hosting a wide array of data sets including quantitative trait loci (QTL), metabolic pathways, genetic diversity, genes, proteins, germplasm, literature, ontologies and a fully-structured markers and sequences database integrated with genome browsers and maps from various published studies (genetic, physical, bin, etc.). In addition, Gramene now hosts a variety of web services including a Distributed Annotation Server (DAS), BLAST and a public MySQL database. Twice a year, Gramene releases a major build of the database and makes interim releases to correct errors or to make important updates to software and/or data
Platelet ITAM signaling is critical for vascular integrity in inflammation
Platelets play a critical role in maintaining vascular integrity during inflammation, but little is known about the underlying molecular mechanisms. Here we report that platelet immunoreceptor tyrosine activation motif (ITAM) signaling, but not GPCR signaling, is critical for the prevention of inflammation-induced hemorrhage. To generate mice with partial or complete defects in these signaling pathways, we developed a protocol for adoptive transfer of genetically and/or chemically inhibited platelets into thrombocytopenic (TP) mice. Unexpectedly, platelets with impaired GPCR signaling, a crucial component of platelet plug formation and hemostasis, were indistinguishable from WT platelets in their ability to prevent hemorrhage at sites of inflammation. In contrast, inhibition of GPVI or genetic deletion of Clec2, the only ITAM receptors expressed on mouse platelets, significantly reduced the ability of platelets to prevent inflammation-induced hemorrhage. Moreover, transfusion of platelets without ITAM receptor function or platelets lacking the adapter protein SLP-76 into TP mice had no significant effect on vascular integrity during inflammation. These results indicate that the control of vascular integrity is a major function of immune-type receptors in platelets, highlighting a potential clinical complication of novel antithrombotic agents directed toward the ITAM signaling pathway
Substituting abacavir for hyperlipidemia-associated protease inhibitors in HAART regimens improves fasting lipid profiles, maintains virologic suppression, and simplifies treatment
BACKGROUND: Hyperlipidemia secondary to protease inhibitors (PI) may abate by switching to anti-HIV medications without lipid effects. METHOD: An open-label, randomized pilot study compared changes in fasting lipids and HIV-1 RNA in 104 HIV-infected adults with PI-associated hyperlipidemia (fasting serum total cholesterol >200 mg/dL) who were randomized either to a regimen in which their PI was replaced by abacavir 300 mg twice daily (n = 52) or a regimen in which their PI was continued (n = 52) for 28 weeks. All patients had undetectable viral loads (HIV-1 RNA <50 copies/mL) at baseline and were naïve to abacavir and non-nucleoside reverse transcriptase inhibitors. RESULTS: At baseline, the mean total cholesterol was 243 mg/dL, low density lipoprotein (LDL)-cholesterol 149 mg/dL, high density lipoprotein (HDL)-cholesterol 41 mg/dL, and triglycerides 310 mg/dL. Mean CD4+ cell counts were 551 and 531 cells/mm(3 )in the abacavir-switch and PI-continuation arms, respectively. At week 28, the abacavir-switch arm had significantly greater least square mean reduction from baseline in total cholesterol (-42 vs -10 mg/dL, P < 0.001), LDL-cholesterol (-14 vs +5 mg/dL, P = 0.016), and triglycerides (-134 vs -36 mg/dL, P = 0.019) than the PI-continuation arm, with no differences in HDL-cholesterol (+0.2 vs +1.3 mg/dL, P = 0.583). A higher proportion of patients in the abacavir-switch arm had decreases in protocol-defined total cholesterol and triglyceride toxicity grades, whereas a smaller proportion had increases in these toxicity grades. At week 28, an intent-to treat: missing = failure analysis showed that the abacavir-switch and PI-continuation arms did not differ significantly with respect to proportion of patients maintaining HIV-1 RNA <400 or <50 copies/mL or adjusted mean change from baseline in CD4+ cell count. Two possible abacavir-related hypersensitivity reactions were reported. No significant changes in glucose, insulin, insulin resistance, C-peptide, or waist-to-hip ratios were observed in either treatment arm, nor were differences in these parameters noted between treatments. CONCLUSION: In hyperlipidemic, antiretroviral-experienced patients with HIV-1 RNA levels <50 copies/mL and CD4+ cell counts >500 cells/mm(3), substituting abacavir for hyperlipidemia-associated PIs in combination antiretroviral regimens improves lipid profiles and maintains virologic suppression over a 28-week period, and it simplifies treatment
Monocytes, neutrophils, and platelets cooperate to initiate and propagate venous thrombosis in mice in vivo
Deep vein thrombosis (DVT) is a major cause of cardiovascular death. The sequence of events that promote DVT remains obscure, largely as a result of the lack of an appropriate rodent model. We describe a novel mouse model of DVT which reproduces a frequent trigger and resembles the time course, histological features, and clinical presentation of DVT in humans. We demonstrate by intravital two-photon and epifluorescence microscopy that blood monocytes and neutrophils crawling along and adhering to the venous endothelium provide the initiating stimulus for DVT development. Using conditional mutants and bone marrow chimeras, we show that intravascular activation of the extrinsic pathway of coagulation via tissue factor (TF) derived from myeloid leukocytes causes the extensive intraluminal fibrin formation characteristic of DVT. We demonstrate that thrombus-resident neutrophils are indispensable for subsequent DVT propagation by binding factor XII (FXII) and by supporting its activation through the release of neutrophil extracellular traps (NETs). Correspondingly, neutropenia, genetic ablation of FXII, or disintegration of NETs each confers protection against DVT amplification. Platelets associate with innate immune cells via glycoprotein Ibα and contribute to DVT progression by promoting leukocyte recruitment and stimulating neutrophil-dependent coagulation. Hence, we identified a cross talk between monocytes, neutrophils, and platelets responsible for the initiation and amplification of DVT and for inducing its unique clinical features
- …