114 research outputs found
Adjustment of a turbulent boundary layer to a 'canopy' of roughness elements
A model is developed for the adjustment of the spatially averaged time-mean flow of a deep turbulent boundary layer over small roughness elements to a canopy of larger three-dimensional roughness elements. Scaling arguments identify three stages of the adjustment. First, the drag and the finite volumes of the canopy elements decelerate air parcels; the associated pressure gradient decelerates the flow within an impact region upwind of the canopy. Secondly, within an adjustment region of length of order Lc downwind of the leading edge of the canopy, the flow within the canopy decelerates substantially until it comes into a local balance between downward transport of momentum by turbulent stresses and removal of momentum by the drag of the canopy elements. The adjustment length, Lc, is proportional to (i) the reciprocal of the roughness density (defined to be the frontal area of canopy elements per unit floor area) and (ii) the drag coefficient of individual canopy elements. Further downstream, within a roughness-change region, the canopy is shown to affect the flow above as if it were a change in roughness length, leading to the development of an internal boundary layer. A quantitative model for the adjustment of the flow is developed by calculating analytically small perturbations to a logarithmic turbulent velocity profile induced by the drag due to a sparse canopy with L/Lc≪1, where L is the length of the canopy. These linearized solutions are then evaluated numerically with a nonlinear correction to account for the drag varying with the velocity. A further correction is derived to account for the finite volume of the canopy elements. The calculations are shown to agree with experimental measurements in a fine-scale vegetation canopy, when the drag is more important than the finite volume effects, and a canopy of coarse-scale cuboids, when the finite volume effects are of comparable importance to the drag in the impact region. An expression is derived showing how the effective roughness length of the canopy, \z0eff, is related to the drag in the canopy. The value of \z0eff varies smoothly with fetch through the adjustment region from the roughness length of the upstream surface to the equilibrium roughness length of the canopy. Hence, the analysis shows how to resolve the unphysical flow singularities obtained with previous models of flow over sudden changes in surface roughness
Three-Dimensional Seismic Imaging of Ancient Submarine Lava Flows : An Example From the Southern Australian Margin
This work comprises a part of the Great Australian Bight Deepwater Marine Program (GABDMP) for funding this project. The GABDMP is a CSIRO research program, sponsored by Chevron Australia the results of which will be made publicly available. 3D seismic data was gratefully provided by TGS. IHS are thanked for access to seismic interpretation software. Spectral decomposition was carried out using Foster-Findlay Associates Geoteric Software. Sverre Planke and Tracy Gregg are thanked for constructive reviews.Peer reviewedPublisher PD
The Interface Region Imaging Spectrograph (IRIS)
The Interface Region Imaging Spectrograph (IRIS) small explorer spacecraft
provides simultaneous spectra and images of the photosphere, chromosphere,
transition region, and corona with 0.33-0.4 arcsec spatial resolution, 2 s
temporal resolution and 1 km/s velocity resolution over a field-of-view of up
to 175 arcsec x 175 arcsec. IRIS was launched into a Sun-synchronous orbit on
27 June 2013 using a Pegasus-XL rocket and consists of a 19-cm UV telescope
that feeds a slit-based dual-bandpass imaging spectrograph. IRIS obtains
spectra in passbands from 1332-1358, 1389-1407 and 2783-2834 Angstrom including
bright spectral lines formed in the chromosphere (Mg II h 2803 Angstrom and Mg
II k 2796 Angstrom) and transition region (C II 1334/1335 Angstrom and Si IV
1394/1403 Angstrom). Slit-jaw images in four different passbands (C II 1330, Si
IV 1400, Mg II k 2796 and Mg II wing 2830 Angstrom) can be taken simultaneously
with spectral rasters that sample regions up to 130 arcsec x 175 arcsec at a
variety of spatial samplings (from 0.33 arcsec and up). IRIS is sensitive to
emission from plasma at temperatures between 5000 K and 10 MK and will advance
our understanding of the flow of mass and energy through an interface region,
formed by the chromosphere and transition region, between the photosphere and
corona. This highly structured and dynamic region not only acts as the conduit
of all mass and energy feeding into the corona and solar wind, it also requires
an order of magnitude more energy to heat than the corona and solar wind
combined. The IRIS investigation includes a strong numerical modeling component
based on advanced radiative-MHD codes to facilitate interpretation of
observations of this complex region. Approximately eight Gbytes of data (after
compression) are acquired by IRIS each day and made available for unrestricted
use within a few days of the observation.Comment: 53 pages, 15 figure
Recommended from our members
Threads and Boundaries: Rethinking the Intellectual History of International Relations
n/
Stress Field Interactions Between Overlapping Shield Volcanoes : Borehole Breakout Evidence From the Island of Hawai'i, USA
Acknowledgments: This PTA2 borehole investigation was funded by the International Continental Scientific Drilling Program (ICDP) and by VMAPP (Volcanic Margin Petroleum Prospectivity) project (VBPR/DougalEARTH/TGS) in collaboration with the Humu'ula Groundwater Research Project. D. A. J. and S. P. are partly funded through a Norwegian Research Council Centres of Excellence project (project number 223272, CEED). We thank Marco Groh for the logging operations. We thank two anonymous reviewers for the comments and suggestions. We are particularly grateful to the Associate Editor Mike Poland for his valuable comments and his critical review that greatly improved the manuscript.Peer reviewedPublisher PD
Compact CMOS Camera Demonstrator (C3D) for Ukube-1
The Open University, in collaboration with e2v technologies and XCAM Ltd, have been selected to fly an EO (Earth Observation) technology demonstrator and in-orbit radiation damage characterisation instrument on board the UK Space Agency's UKube-1 pilot Cubesat programme. Cubesat payloads offer a unique opportunity to rapidly build and fly space hardware for minimal cost, providing easy access to the space environment. Based around the e2v 1.3 MPixel 0.18 micron process eye-on-Si CMOS devices, the instrument consists of a radiation characterisation imager as well as a narrow field imager (NFI) and a wide field imager (WFI). The narrow and wide field imagers are expected to achieve resolutions of 25 m and 350 m respectively from a 650 km orbit, providing sufficient swathe width to view the southern UK with the WFI and London with the NFI. The radiation characterisation experiment has been designed to verify and reinforce ground based testing that has been conducted on the e2v eye-on-Si family of devices and includes TEC temperature control circuitry as well as RADFET in-orbit dosimetry. Of particular interest are SEU and SEL effects. The novel instrument design allows for a wide range of capabilities within highly constrained mass, power and space budgets providing a model for future use on similarly constrained missions, such as planetary rovers. Scheduled for launch in December 2011, this 1 year low cost programme should not only provide valuable data and outreach opportunities but also help to prove flight heritage for future missions
The effect of a group of obstacles on flow and dispersion over a surface
SIGLEAvailable from British Library Document Supply Centre-DSC:D208537 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
Voluntary financial reporting strategies of South Australian independent schools
This paper reports on the voluntary financial reporting strategies and practices of three independent schools in South Australia, examined through agency theory, stakeholder theory and signalling theory, and informed by Argyris and Schön’s theories of action. Insights are gained through the analysis of schools’ financial information, interviews and direct observation of meetings. While key finance personnel espouse accountability, compliance and self-promotion as motivations for financial reporting to parents, only the latter two are reflected in the schools’ reporting practices. The study develops a model that relates perceptions of parents (as members, owners/stakeholders and customers) to the school’s financial reporting strategies.Nicole D. Moschakis, Cate Jerram and Janice Loftu
- …