527 research outputs found

    Quantum unitary dynamics in cosmological spacetimes

    Full text link
    We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.Comment: 18 page

    Uniqueness of the Fock quantization of the Gowdy T3T^3 model

    Get PDF
    After its reduction by a gauge-fixing procedure, the family of linearly polarized Gowdy T3T^3 cosmologies admit a scalar field description whose evolution is governed by a Klein-Gordon type equation in a flat background in 1+1 dimensions with the spatial topology of S1S^1, though in the presence of a time-dependent potential. The model is still subject to a homogeneous constraint, which generates S1S^1-translations. Recently, a Fock quantization of this scalar field was introduced and shown to be unique under the requirements of unitarity of the dynamics and invariance under the gauge group of S1S^1-translations. In this work, we extend and complete this uniqueness result by considering other possible scalar field descriptions, resulting from reasonable field reparameterizations of the induced metric of the reduced model. In the reduced phase space, these alternate descriptions can be obtained by means of a time-dependent scaling of the field, the inverse scaling of its canonical momentum, and the possible addition of a time-dependent, linear contribution of the field to this momentum. Demanding again unitarity of the field dynamics and invariance under the gauge group, we prove that the alternate canonical pairs of fieldlike variables admit a Fock representation if and only if the scaling of the field is constant in time. In this case, there exists essentially a unique Fock representation, provided by the quantization constructed by Corichi, Cortez, and Mena Marugan. In particular, our analysis shows that the scalar field description proposed by Pierri does not admit a Fock quantization with the above unitarity and invariance properties.Comment: 14 page

    Quantum Gowdy T3T^3 model: A uniqueness result

    Get PDF
    Modulo a homogeneous degree of freedom and a global constraint, the linearly polarised Gowdy T3T^3 cosmologies are equivalent to a free scalar field propagating in a fixed nonstationary background. Recently, a new field parameterisation was proposed for the metric of the Gowdy spacetimes such that the associated scalar field evolves in a flat background in 1+1 dimensions with the spatial topology of S1S^1, although subject to a time dependent potential. Introducing a suitable Fock quantisation for this scalar field, a quantum theory was constructed for the Gowdy model in which the dynamics is implemented as a unitary transformation. A question that was left open is whether one might adopt a different, nonequivalent Fock representation by selecting a distinct complex structure. The present work proves that the chosen Fock quantisation is in fact unique (up to unitary equivalence) if one demands unitary implementation of the dynamics and invariance under the group of constant S1S^1 translations. These translations are precisely those generated by the global constraint that remains on the Gowdy model. It is also shown that the proof of uniqueness in the choice of complex structure can be applied to more general field dynamics than that corresponding to the Gowdy cosmologies.Comment: 28 pages, minor changes, version accepted for publication in Classical and Quantum Gravit

    Massless scalar field in de Sitter spacetime: unitary quantum time evolution

    Get PDF
    We prove that, under the standard conformal scaling, a massless field in de Sitter spacetime admits an O(4)-invariant Fock quantization such that time evolution is unitarily implemented. This result disproves previous claims in the literature. We discuss the relationship between this quantization with unitary dynamics and the family of O(4)-invariant Hadamard states given by Allen and Folacci, as well as with the Bunch-Davies vacuum.Comment: 23 pages. Typos corrected, matches published versio

    Engineering the reciprocal space for ultrathin GaAs solar cells

    Full text link
    III-V solar cells dominate the high efficiency charts, but with significantly higher cost than other solar cells. Ultrathin III-V solar cells can exhibit lower production costs and immunity to short carrier diffusion lengths caused by radiation damage, dislocations, or native defects. Nevertheless, solving the incomplete optical absorption of sub-micron layers presents a challenge for light-trapping structures. Simple photonic crystals have high diffractive efficiencies, which are excellent for narrow-band applications. Random structures a broadband response instead but suffer from low diffraction efficiencies. Quasirandom (hyperuniform) structures lie in between providing high diffractive efficiency over a target wavelength range, broader than simple photonic crystals, but narrower than a random structure. In this work, we present a design method to evolve a simple photonic crystal into a quasirandom structure by modifying the spatial-Fourier space in a controlled manner. We apply these structures to an ultrathin GaAs solar cell of only 100 nm. We predict a photocurrent for the tested quasirandom structure of 25.3 mA/cm2^2, while a planar structure would be limited to 16.1 mA/cm2^2. The modified spatial-Fourier space in the quasirandom structure increases the amount of resonances, with a progression from discrete number of peaks to a continuum in the absorption. The enhancement in photocurrent is stable under angle variations because of this continuum. We also explore the robustness against changes in the real-space distribution of the quasirandom structures using different numerical seeds, simulating variations in a self-assembly method

    Granulomas caused by Mycobacterium sp. in farmed Turbot Scopthalmus maximus (Linnaeus, 1758)

    Get PDF
    Turbot, Scophthlalmus maximus, is a Pleuronectiformes fish that occurs in northeast Atlantic along the European coast and in the Mediterranean Sea and is produced in aquaculture since the last quarter of the twentieth century. During a survey conducted in a turbot fish farm nodular formations were occasionally observed in several organs, especially in the kidney and in the spleen. Microscopic observations showed that these nodules contained acid-fast bacilli. The molecular identification of the isolated bacteria conducted to the Mycobacterium genus. Although no abnormal mortalities were evident morbidity was observed. The normal development and welfare of infected fish decrease and the condition factor, the haematocrit and the haemoglobin concentration in blood decreases significantly with the increase of nodules abundance

    Flat-band localization and interaction-induced delocalization of photons

    Full text link
    Advances in quantum engineering have enabled the design, measurement, and precise control of synthetic condensed matter systems. The platform of superconducting circuits offers two particular capabilities: flexible connectivity of circuit elements that enables a variety of lattice geometries, and circuit nonlinearity that provides access to strongly interacting physics. Separately, these features have allowed for the creation of curved-space lattices and the realization of strongly correlated phases and dynamics in one-dimensional chains and square lattices. Missing in this suite of simulations is the simultaneous integration of interacting particles into lattices with unique band dispersions, such as dispersionless flat bands. An ideal building block for flat-band physics is the Aharonov-Bohm cage: a single plaquette of a lattice whose band structure consists entirely of flat bands. Here, we experimentally construct an Aharonov-Bohm cage and observe the localization of a single photon, the hallmark of all-bands-flat physics. Upon placing an interaction-bound photon pair into the cage, we see a delocalized walk indicating an escape from Aharonov-Bohm caging. We further find that a variation of caging persists for two particles initialized on opposite sites of the cage. These results mark the first experimental observation of a quantum walk that becomes delocalized due to interactions and establish superconducting circuits for studies of flat-band-lattice dynamics with strong interactions.Comment: 8 + 9 pages, 4 + 12 figures, 0 + 2 tables; modified title, added a supplementary figure, and modified the definition used for tunneling tim
    corecore