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I. INTRODUCTION

In recent years, a series of remarkable results have beearpconcerning the canonical quan-
tization of linear scalar fields propagating on compactiapatanifolds, with a dynamics resem-
bling that of a free field, but with anflective time-dependent mass. More precisely, the results

apply to a field equation of the type

X —Ax +s(thy =0, (1)

defined on a static spacetime of the fatm 1, wherel is an interval of the real ling; is a compact
Riemannian manifold of dimensiah< 3, A is the Laplace-Beltrami (LB) operator ah ands(t)

is a general function of time, subject only to rather milddibions. For instance, for all purposes,
it suffices that this function is twice fierentiable, with a second derivative that is integrable in
each compact subinterval bf

The results of Refs.  [1+3] show that one can always find a Foektization for the system
such that: i) the state that defines the Fock representasiamvariant under the isometriesf the
spatial manifold, and ii) the dynamics dictated by the field equatidn (1) isarily implemented.

We notice that, although linear, the classical dynamicsigtnivial, owing to the presence of
the time-dependent mas). By unitary implementation of the dynamics we mean theofeihg:
given two arbitrary values of time,andt’, the linear symplectic transformation that corresponds
to classical canonical evolution frohto t’ is implemented in the Fock representation as a unitary
operator. This is assumed to happen for all instants of trm@very connected component of)
the intervall, with no further conditions. In particular, no continuitgrditions are imposed, and
therefore nothing is said about the existence of a well-ddfldamiltonian operator.

In addition, and most importantly, the above Fock repregent has been shown to be unique
modulo unitary equivalence, in the sense that any other Feymlesentation with the same proper-
ties of invariance under spatial symmetr@es unitary dynamics is guaranteed to define a unitarily
equivalent representation [1-3]. Note that these unigegeresults are obtained in the absence of

time-translation invariance, which is a key ingredientia standard uniqueness theorems, regard-

! This state is usually called the vacuum of the represematitthough it does not necessarily correspond to an

eigenstate of a Hamiltonian operator.
2 More generally, one can consider the group of transformatibat commute with the LB operator and are unitary

in the Hilbert space of square integrable functions of thd fienfiguration, with respect to the measure defined by
the metric volume element.



ing the quantization of free fields in stationary (or staippcetimes (see Refs.! [4-6]). In the
considered nonstationary settings, the mentioned netsesngle out a unique equivalence class
of representations, ensuring the nonambiguity of the @aygredictions, rather than selecting a
definite Fock representation based on a specific vacuum.

Though rather simple at first glance, these results find egiobn in a variety of situations,
including the quantization of inhomogeneous spacetimgesh ss the Gowdy models (see Refs.
[7=12]), the quantization of cosmological perturbaticBs 13, 14], and the discussion of string
dynamics in arbitrary plane wave backgrounds [15]. Anotheticular instance in which these
results can be applied is the case of free fields in a nonstagiespacetime which is nevertheless
conformal to a static universe, by means of a time depenagribamal factor. This is the situation
found in Friedmann-Robertson-Walker (FRW) universeshi{wiimpact spatial sections), as well
as in the very interesting case of the de Sitter spacétirrefact, in all of these examples, the
use of conformal time combined with a suitable scaling ofdhiginal field variablep transforms
the original free field equation into and equation of the t{j)e The scaled field that satisfies this
latter equation ig = QY?¢, whereQ is the (exclusively) time-dependent conformal factor. The
new field possesses affertive time-dependent masf) that depends on the conformal factor
and on the mass of the original field.

However, one can find claims in the recent literature statmag, for the case of the massless
field in de Sitter spacetime, no scaling of the field variatllewss for a unitary dynamics. That
is the conclusion of Ref.| [17]. One of the aims of the presentkws to clarify this situation,
showing with due care that those claims are unséunle standard conformal scaling of the field
does indeed lead to a field formulation with the desired pitogse allowing for a representation
where one can reach a unitary implementation of the dynaafitise scaled field,, regardless
of the value of the mass of the original field in de Sitter spaoe In fact, in what concerns
the possibility of a unitary implementation of the dynamitse value of the mass parameter,
positive, null, or even negative, is not relevant. The valiude masss of course important for the
existence of a fully de Sitter invariant Fock state of the &fadrd type. Actually, it is well known

that the so called Bunch-Davies vacuum (or Euclidean vaguwrmich is anO(1, 4)-invariant

3 For other criteria concerning free fields is 1 dimensional de Sitter spacetime, see Ref. [16].
4 The reasons can be traced back to an unsuitable choice of nteméeld, as well as to the use of arguments based

on the limit of infinite times, which is radically fierent from the limit in which the number of modes grows to
infinity (for further details, see Selc.IlI).



state, breaks down in the massless case [18]. Nonethelessjdes not prevent a consistent
Fock quantization from being obtained, e.g. by mean©g@f), rather thanO(1, 4), invariant
states. We show explicitly that a Fock quantization can leaed such that the dynamics of the
massless field is unitarily implemented at the quantum leMeis result is in full agreement with
more general mathematical-physics results derived in dinéext of fields with a time-dependent
mass. Taking advantage of such more general studies, ona@aover show that the obtained
guantization is in fact unique, in the sense that any a@i{éj-invariant Fock representation which
also allows for a unitary dynamics is necessarily unitaguivalent. In particular, the Fock
representation that naturally emerges from our approashdsa to be unitarily equivalent to the
O(4)- invariant quantizations proposed some time ago byrAdled Folaccil [19]. Moreover, by
applying our approach to the free massive field case, we gatlarEpresentation which (i) admits
a unitary implementation of the dynamics and (ii) has a vatstate which is unitarily equivalent
to the celebrated Bunch-Davies state.

The paper is organized as follows. In Ség. Il we introducecthssical setting for free, real
scalar fields propagating in de Sitter spacetime. Confotima is chosen as the evolution param-
eter and a scaling of the original field variable by the spawetonformal factor is performed to
define the basic field variable. The issue of unitary dynarfeicthe massless field is discussed in
Sec![1ll. As the main result of the present work, a Fock regmegtion permitting a unitary imple-
mentation of the dynamics of the (scaled) massless scdlhidipresented. SectignlV is devoted
to the study of the relationship between the so obtained Fegiesentation and those based on
Hadamard states, namely the Bunch-Davies vacuum and tee-Ablacci states. The relationship
with another important set of states, namely the adiabtdtes, is briefly addressed in Appendix
[Al We summarize and discuss our conclusions in Sec. refseatonclusions. Finally, Appendix
Bl contains details of the calculations needed in the probfiseounitary evolution and the unitary

equivalence betweenfiirent vacua.

. THE MODEL: FREE FIELDS IN DE SITTER SPACETIME

The de Sitter spacetime is the maximally symmetric spa@tifpositive constant curvature.

It has the topology ok x S® and can be seen as the hyperboloid

2 02 0 v2 x2 4 2 2
- Xt X[ +X+ X3+ X =H (2)



embedded in flat five-dimensional spacetime (see e.g. RE9s2)]). The curvature of the space
isr = 12H2,

A system of coordinates, (o, 6, ) in the whole space can be defined as follows:

X = H™sinhHt), —oco<t< oo, 3)
X, = HlcoshHt)cosg), O0<o <, (4)
X, = H™tcosh@t)sin()cosp), 0<6<m, (5)
X3 = H™* cosh@t) sin() sin(@) cosfp), 0< ¢ < 27, (6)
xs = H ™t cosht) sin(o) sin() sin(p). (7)

In these coordinates the metric reads
ds? = —dt? + H2 costf(Ht){do? + sirf(c)[dF? + sirt(6)dy?]}. (8)

The de Sitter spacetime is conformal to the static univergeS®. To see this, let us introduce the
conformal time
n = 2arctan€™), n e (0,n). (9)

In the new coordinate system, the metric takes the form
ds = a2(n){—dn? + do? + sirf(o)[dF? + sirf(6)de?]}, (10)

where one recognizes the metric of the static universe antirtte-dependent conformal factor

a0 = e (11)
Let us consider the propagation of a free (minimally couptedl scalar fields with massm

and dynamical equation
(o -nP)¢p =0, (12)

where o stands for the d’Alambertian associated to the spacetimeianeln the coordinates

(t, 0, 6, ¢), this field equation becomes
9%¢ + 3H tanhH)d¢ + (—% + n12)¢ = 0. (13)
Here, A is the LB operator ors®. We now change to conformal time and introduce the scaled
field®
X = ag. (14)

5 Similar scalings can also be performed in less than thretiaspgamensions to reach a field which admits a unitary
dynamicsl[3].



We then obtain the new field equation
¥+ [-A+ P -2HY)a? + 1] y = 0. (15)

The dot stands for the derivative with respect to the conébtimer. Note the absence of terms
containing the first time derivative of the field.

The Lagrangian density corresponding to the fieldip to total time derivatives) is
L= 2|67 - (w7 - (a2 - 2) o2 (16)
) X al* |
The canonical momentum conjugateytean then be taken as

PX = X (17)

Alternatively, one might have started from the canonicat g P, = a9, ¢) and performed the

time-dependent canonical transformation

P .
¥ = ap, PX=;"’+a¢. (18)

Let us return to the field equation_{15) and decompose the fieéldeigenmodes of the LB

operator:
X = Z Okem Ykems (29)

k,£,m

whereY,.m are theS3-spherical harmonics, which satisfy the eigenvalue equoati
AVyem = _k(k + 2)Yk£m, (20)

and provide an orthonormal basis for the space of squargratite functions ors®. In these
formulas, the integek takes values from 0 too, ¢ varies from 0 tdk, andm ranges from-£ to ¢
(see e.g. Refs| [21, 22]). In the following, we will use theatmngy to collectively denote all the
modek.m corresponding to the same valuekof

Introducing the decomposition {[19) in the field equation) @®&d using the orthogonality rela-

tions for the harmonics, we obtain the dynamical equatiosech mode:

sirfn

wherem? = m/H. These equations are the same for all the valuésamid m that share the same

G + | (K +1)* +

G =0, (21)

value ofk. Note also that, fronP, = y, it follows that the momentum canonically conjugate to

the mode variable, satisfies the equatioo, = Q.
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The general solution to the equations of motiod (21) is wedikn. In fact, a change of variable

ak(n) = (sinn)Y?f (- cosn) transforms equatiof (21) into

2t df ,

dy?

with y = — cosp. This is a Legendre equation of degree k + 1/2 and ordey = (9/4 — m(z)l/z,

9

i mz)] fy)=0, (22)

whose independent solutions are the associated Legenarédios P, and Q, (see e.g. Refs.

[23,124]). The general solution to the equations of motidh) {2 therefore

k(1) = Ax \/sinnP}(— cosn) + By v/sinnQ;(— cosy), (23)

whereA, andBy are arbitrary (complex) constants.

In the canonical formalism, the general solution to theegponding Hamiltonian equations
=P Po=—[(k+ 1P+ (M? - 2)sin?n|q, (24)

can then be written in the form

Ok A R)(-cosy)  S}(-cosn)
Px Bk R)(-cosy)  S}(-cosn)
whereR, andS! are given by
R¢(—cosn) = +/sinpP(- cosn), S¥(-cosn) = +/sinpQ:(— cosn). (26)
By using the relation
dpP, 1
) = EDYPI) - O+ PO @)
valid also forQ!(y) (see e.g. Refs.| [23, 24]R"(- cosn) and (- cosy) can be expressed as
follows
R!(-cosn) = 1 [(v + 1/2) cosn P4(— cosn) + (v + p)P!_, (- cosn)] , (28)
singy

Si(-cosn) =

| (v + 1/2) cosy Qi(- cosn) + (v + ) Q. (— cosn)| (29)

1
+/sing
Note that one can write the above matrix elements directlieims of the argument cgs

instead of- cosn, since [24]
Py(=x) = cos[ + u)m]Py(x) — % sin[(v + )] Q;(X), (30)

Q=¥ = —coslty + wr Q) - 5 sinl(y + w)a] PL(¥). (31)
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It is not difficult to see that the same expressions holdoandS), [replacingP, (+x) andQ, (£x)
with R)(+x) and S}(+X), respectively]. In particular, for the massless case=(3/2), we get
simply

RI(—X) = (F1FR(N),  SHE(-X) = (-1)*'Sk(X), (32)
where we have used that k + 1/2.

Time evolution from an arbitrary reference timgto any another time is then given by the

( 0 ) Ui n)( Gk (70) ] -
Pk (17) Pk (70)

whereUy(o, ) = Mi(17) My (170).-

canonical transformation

. QUANTIZATION WITH UNITARY DYNAMICS

We will now show that one can find a Fock quantization whicbhvadl a unitary implementa-
tion of the dynamics of the fielg, i.e., a unitary implementation of all transformationsl(38r
arbitrary values ofy andno.

A Fock quantization is defined by a choice of a complex stmgctn phase spatewhich
is tantamount to a choice of sets of creation and annihilatariables (up to irrelevant changes

which do not mix both sets). Let us introduce the classiaainalex) variables

1 1
= +1px), = —ipk), 34
ax N (WK + 1px) ay N (wkOk — 1Px) (34)

where the frequencyy is chosen to match the time-independent part in the equatbmotion
(21), i.e.w = k+ 1. Naturally, these variables satisfy canonical Poissank®ts{ay, a;,} = idy .

If we now declare that the variableg anday, are to be quantized as creation and annihilation
operators, then we single out a particular Fock quantimatioother words, the complex structure
J that determines our particular Fock quantization is defimgd(a,) = iax, J(a;) = —ia; (see

Ref. [2] for details on the Fock quantization).

6 Remember that a complex structure is a map on phase spapegbatves the canonical structure and whose square
is minus the identity. For the construction of a Fock repnégstion, one demands that the complex and the canonical
structures be compatible in the sense that a suitable cotigmosf their actions be positive definite.



Classical time evolution, written in terms of the variabdgsa; , is given by

( ) ] = Uy(1o, 77)( () ] = T Uk(no, 77)Tk_1[ Ao ) (35)
ay () a (170) a (170)
where
Tem 2| ! 36
< V2wn Wn —i ( )

is the matrix corresponding to the change of varialles (BMce the transformations_(35) are
canonical, they necessarily take the form of a general BolgoV transformation, i.e., they can be

written in the form

Ulron) = ( ax(170,1) Bk(170, 1) ] (37)
Bi(no.m) ay(no.m)
with
(0, MIZ = Bimo, m)I° = 1, (38)

independently of the particular valueskot;y, andn.

Standard results [25, 26] now show (see Ref. [2] for detaila} the dynamics is unitarily
implementable (in the above Fock quantization) if and ohflghé functionsgy in Eq. (37) are
square summable; that is, if and only if

4

o k
Z 2, 2, Bilmom) = Z(k + 1)%B(m0. ) < e, (39)
k=0

(=0 m=—(
where the degeneracy factde € 1)? counts the number of degrees of freedom with the same
dynamics. The fulfillment of this summability condition agqs on the asymptotic behavior of
the functionsBy(n0, 7), for large values ok. This in turn depends on the asymptoticsRjfand
S dictated by the ultraviolet (large values of the degree k + 1/2) behavior of the Legendre
functionsP, andQ,. The expansions d?, andQ), are as follows|[24]

P (cosy) = \/gl"(v+,u +1) o Z F(u+j+1/2) cos[(v+ j+12n+%2) - 1)+ /m]

ysinp 4 T(u—j+1/2)T(j + 1)I(v+ j +3/2)(2sing)] ~’ (40)
2t p+ 1) [+ j +1/2) cos| (v + | +1/2) 7 - 2(2) - 1) + ]
Q) (cosn) = \/j \sing Z DTG+ 12T+ D0+ +32) @sim)y Y

These formulas provide asymptotlc expansions (up to aryitrder) valid not only for real values

of the parameten, but also for complex ones. Thus, the range of validity of aisgmptotic

9



expansions covers the whole set of possible valuag, afcluding, of course, the massless case
(u=3/2).

Let us momentarily focus on the massless case. The asympttavior of the Bogoliubov
codficientspy(no, n) can now be deduced, taking into account the matrdgselations([(28, 29),
the matricedJ, and Ty, identities [32), and the asymptotics for the functidti§ and Q¥/2. A
lengthy but straightforward computation, detailed in Apgie[B|, shows thaBy(no, 1) is of order

O(k‘z), for largek, i.e., the asymptotic behavior wh&n- o is given by

Belno,n) = O (k) V. mo. (42)

Thus, it follows that the summability conditidn (39) is sdited for all values ofjy andr, and there-
fore the dynamics is unitarily implemented in the considefeck representatidn This result is
in complete agreement with the general results proven ia.R2f 3], and disproves the conclusion
of Ref. [17], where it is claimed that one cannot attain (byarmseof a Fock quantization) quantum
unitarity of the evolution for the massless field in de Si#pacetime, independently of the field
redefinitiong — f(t)e.

The calculations in Ref!_[17] are based on a specific choiegearhentum for the scaled field:
the momentum obtained just by the inverse scaling. Nevietheone can also adopt other choices
of momentum in order to obtain a canonical pair, while repgcthe linearity of the system.
Namely, one can allow for a time-dependent linear contraouof the field configuration to the
momentum. This kind of time-dependent linear transforaretidfect the dynamics of the basic
field variables. Actually, time-dependent canonical tfamaations of this type have been shown
to be crucial to arrive at a unitary evolution [27]. More sifieally, a unique transformation is
admissible when the dimension of the spatial hypersurfecgseater than one, as it is the case
here. The appropriate canonical transformation (inclgdire field scaling) that leads to unitary
evolution is that provided in EqQL_(IL8). In view of the transfation, it is particularly convenient
to describe the system in conformal time, because then tiégeged momentum is given just by
the time derivative of the scaled field and the field equatsimgplify considerably, reflecting the
conformal nature of the spacetime metric. In Ref.| [17], ribakess, this conformal nature was

not explored. Only in the concluding section of that work tdomformal time was considered,

7 Since the complex structudedepends on the LB operator only, which in turn is(@)-invariant object, our unitary
Fock representation is, in addition, &f4)-invariant quantum theory. Let us note also that the sasyenptotic
behavior and therefore the same conclusions apply for drer @alue of the mass (see Appendix B).
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presenting just a heuristic argument to support that thelasions about the nonunitarity of the
dynamics were valid as well for conformal time. That argutrisrhowever not correct. The
argument goes as follows. When the scaling (14) and the omadatimen are used, the field
equation that one obtains for the massless case, namelfIBpgwith m = 0, is of the form of a

field with a time-dependent mass which is always negativat iEhindeed the case, since we get

from Eq. [15)
X —Ax+

2

The time-dependent masxz;) = 1 — 2/ sirf 5 is not only strictly negative, but moreover blows
up whenn — 0,7 (which corresponds tb — +o0). It was then argued in Refl_[17] that, given
that the time-dependent squared frequencies of the hacmuowiles, namelyk(+ 1)2 — 2/ sirf 7,
are all negative in the limit — +co, this would introduce a non-oscillatory behavior in thatiti
that would cause the failure of unitarity. However, the abavgument does not really pose any
obstruction to the unitary implementation of the dynamltsather points out that the ultraviolet
limit, in which the infinite number of modes of the system camie the scene, and the limit of
infinite timet are radically diferent. In fact, unitary dynamics means the unitary impleiatemn
of all the evolution transformations (33) between any fimite values of time. Actually, when
one considers the evolution between two instants of tiip@ndn, one should look to the values
of (k + 1)2 — 2/ sirf 57 in the limit of largek, and not in the limit of large, because the dynamical
transformation is sensitive only to the values in the ira&fyo, 7], since the equation of motion is
local in time. What happens is that for &llgreater than some (maybe large, but finite) older
(which depends on, andz), the values of the squared frequencies)?—2/ sir? n are positive in
all the considered time interval. Itis true that, for a fimtenber of modes, the evolution (between
finite times) takes place with a negative time-dependeijuigacy. But this does noffact the
possible unitary implementation of the dynamics in a funeatal way, because linear dynamics
in finite dimensions is always unitary, as it is granted by $tene-von Neumann uniqueness
theorem|([28].

For a full clarification of this situation, let us consideetbase where the time dependent term
2/ sirf i in the field equation is replaced simply by;2. This corresponds of course to the limit
t — +o0 in the scale factof(11) and is therefore actually physjoalevant. Moreover, the field

equation obtained with this replacement in the massless oasnely

2
X =AM+ 1—? x =0, (44)

11



keeps precisely the qualitative features of the originalkign [43) that are involved in the argu-
ment sketched above about the behavior of the mode freqegencihe region of larg#l. The
advantage of Eq.[(44) is that it can be solved explicitly inm® of elementary functions, thus
making the whole discussion fully transparent.

In fact, the equations of motion that we obtain for the harimomodes, corresponding to Eq.
(21) (withm = 0) are now

Ok +

(k+1)* - %] ok = 0. (45)
One can readily check that the general solution is of the form

cos[k + 1)y]
 (k+ 1)y

sin[(k + )]

(k+ L) —sin[(k+ 1)n] |, (46)

k(1) = A« ( —cos[k + 1)17]) + By (

whereA, andBy are arbitrary complex constants. One can now simply follegvgrocedure de-
scribed above and obtain the correspondindtomentssy(no, n7) in the Bogoliubov transformation

(37). With An standing fom — no, we get in this case

1 (11 iAn
Br(no,m) = m (n—g - F + (kT)ngnz) cos[k + 1)An]
_ 1 (1.1 1 i(7+m0) \_.
+2(k + 1)2 (77_% * F B (k + 1)277(2)772 a (kZ 1)Z§U2) Sm[(k + 1)A77]- (47)

The leading behavior is thus of ord@r(k‘z), and it follows that the summability condition
(39) is indeed satisfied. This was the conclusion expectad fnore general results concerning
the unitary implementation of time evolution [2, 3], and ions, in particular, that the sign of the
mass term is irrelevaht

We have therefore constructed@)-invariant Fock representation for the massless frakasc
field in de Sitter spacetime, with unitary dynamics. In whakdws, we will investigate the rela-
tionship between our Fock vacuum and the familpéd)-invariant Hadamard states characterized
by Allen and Folaccil[19]. Before doing that, let us stresa tllthough we have focused on the
massless case, the unitarity result holds as well for anysvedree field; i.e., the Fock repre-
sentation, defined by the choide (34) of annihilation an@tive operators, provides a quantum
description where time evolution of the free massive fielohiésla unitary implementation. That
this is so can be directly verified from the asymptotic betis/ofP, andQ, which, for any (con-

stant) value of the parameter(including complex numbers), provide a betaff@eent satisfying

8 A comment in this respect already appeared in Ref. [15].

12



Eq. (42). Hence, given a scalar field with > 0 (what is more, with any real -even negative-
value ofm), there exists at least one Fock representation where tiolaten is implemented as

a unitary operator. Further details of this proof can be ébumAppendiXB.

IV. EQUIVALENCE WITH THE ALLEN-FOLACCI'S  O(4)-INVARIANT STATE

An alternate way of defining a Fock quantization consisteiraing a particular set of com-
plex mode solutionguy} to the equations of motiofn (21). These solutions are nomedlso that
they satisfy the condition

Ukl.,l; — U;Uk =i (48)

on a given Cauchy surface, say= n. The symbok denotes complex conjugation. Once such a

set of solutions is chosen, one can write the general saoltithe field equatior (15) as
£= " (beUcYic + U Yy). (49)
k

The Fock quantization is then performed by declaring thaandb; are to be quantized as the
annihilation and creation operators of the Fock represientésee Ref. [29] for details and a nice
account on Fock states on homogeneous and isotropic spacéss description, the Fock quan-
tization presented in the previous section correspondsetahioice of mode solutions determined

by the following initial data:

) == ) =1y % (50

For massive free fields in de Sitter spacetime, the Fock qaaditn is usually carried out using

the unique solution which is de Sitter invariant, i.e., im&at under the fullO(1, 4) group, and
satisfies the Hadamard criterion. The corresponding sebdersolutions is of the form (23), with
[18,119]

_ 2 3 zF(k—y+3/2) -
Be=—7M0 A= \/4r(k+ﬂ+3/2)é o (1)

The vacuum of the corresponding Fock representation is kraswmthe Bunch-Davies, or Eu-
clidean vacuum. Explicitly, the mode solutions determgnthis Euclidean quantization can be

written as
i) = A |Ri(-cosy) - Zisi(- cosn)] = Al [R:(cosn) + Zist(cosy)|, (52

13



where in the last equality we have taken into account EJ. #86yell as relation$ (80,81). Given

a Cauchy surface, say= o, the momentum canonically conjugatexdnyo) is

. : : 2.
Xk(0) = A€ | Ré(cosn) + ~iS//(cosn) (53)

10

In the case of zero mass, it is a well known fact that the Egalidvacuum breaks down, i.e.,
there is no de Sitter invariant Hadamard vacuum in this ¢&8e As explained in Refs| [18, 19],
this is due to the dynamics of the zero mode only. One can trefasily check that takingn = 0,
and hence: = 3/2, in the above expressioris [51,52), one gets perfectly-dedihed solutions
for k # 0, whereas the corresponding expressionkfct 0 becomes meaningless. To obtain a
complete set of well-defined solutions, and therefore a-defiined quantization, one only needs to
derive proper solutions for the zero mode [or just quantieezero mode in a ffierent, consistent
alternate way]. Independent solutions to the zero modeteouaf motion withm = 0 are ¥ sing
and @/ sinn) — cosn. It is shown in Ref. |[19] that one can arrive at a one-paranfataily of
solutions for the zero mode such that [together with thetanis [52) fork # 0] O(4)-invariant
Hadamard vacua are obtained.

The question naturally arises of whether or not the quatitizgresented in the previous sec-
tion is unitarily equivalent to those corresponding to@(é)-invariant states constructed by Allen
and Folacci. Note that the unitary equivalence betweerethggresentations depends only on the
behavior of the states for large valueskpfand therefore the particular quantization used for the
zero mode is irrelevant (provided of course that we are usinthe zero mode a standard quanti-
zation that satisfies the Stone-von Neumann conditionspane.g. a polymer type quantization).

Given two sets of mode solutiofig} and{y; }, determined by initial conditionigyx. x« },,, and
{(vio X nes the two corresponding Fock representations are unitaglyvalent if and only if the

following set ofg, codficients is square summable (see e.g. Ref. [29]):

Bx = i Lk (ro)(0) — ek (mo)xic (o) - (54)

Again, for the sets of solutions that we are considering,cheficients, depend only on the
indexk, and not on the full set of labels So, the summability condition is still of the tyde {39),
with a degeneracy factok ¢ 1)°.

Let us now fix a Cauchy surface; = 19, and evaluate the cﬁ"ﬂ:ientsﬁk relating our
datarepresentatiorl (50) with the Allen-Folacci daépresentationy, x«)l,, with u = 3/2 [see
Egs. [(GZ5B)]. Using relations (£8]29) and the asymptdticthe functionsP>? andQ??, one can
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check (see Appendix|B for further details) tifatin Eq. (53) is of ordeiO (k~?) in the ultraviolet
regimek — oo (or, equivalently, whew — o0). This asymptotic behavior is flicient to satisfy
the summability condition, and it is therefore proven tiat Fock representation discussed in the
previous section is unitarily equivalent to the represtmedefined by the Allen-Folacci vacua.

In addition to the massless case, which correspondst&/2, one can further check (as we do
in Appendix(B) that the asymptotic behavjgy ~ O(k‘Z) still holds for anym > 0, case in which
the solution[(5R) corresponds to the celebrated Bunchd3a\dr Euclidean) vacuum. Hence, the
Fock representation of Sel. ]Il is unitarily equivalent he representation based on the Bunch-
Davies vacuum. Let us again remark that the quantizatioreof Bl supports a unitary dynamics
for massive fields as well. We have thus proven, also for magiglds, that the quantization based
on the Bunch-Davies vacuum, which follows from the requieetrof full de Sitter invariance and
the Hadamard condition, is unitarily equivalent to the dization obtained from the requirement
of unitary implementation of the dynamics.

The fact that both viewpoints —the one using the Hadamardition and the one based on
unitary dynamics— select the same equivalence class adseptations [when the scaled figlds
used] can only be considered as a reassuring result, comgpegb a priori distinct approaches. In
the unitary dynamics perspective, one imposes only theéends of unitary transformations that
implement the classical time evolution between any twoul&g instants separated by a finite (as
opposed tanfinitesima) interval of time, with no extra requirements, like e.g. touaity or any
pre-assigned local form of the vacuum. When one uses therhtdacondition, an apparently
stronger condition is imposed, that fixes the local singiyatructure of the vacuum state. As it
is well known, this condition is strong enough to guarankeeregularization of the stress-energy
tensor, which was in fact the original motivation to adheyatt It does not seem at all clear
that those two viewpoints should lead to fully equivalenamgtizations, and the fact that they do

constitutes an interesting result by itself.

V. CONCLUSIONS AND DISCUSSION

We have explicitly shown that there exists a Fock quantredf the massless scalar field in de
Sitter spacetime admitting a unitary implementation ofttivee evolution. Like in other situations
considered in the literature, this involves a scaling offiblel variable, using the conformal factor,

and the introduction of a suitable momentum field, given leydbnformal time derivative of the
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scaled field. Our result disproves previous statementsititdrature|[17] claiming precisely that
it is impossible to attain a Fock quantization with unitaggndmics in this case, by means of the
scaling that has proven to be dbeetive in other situations/[1-3, [7=11]. In addition to ping a
direct proof of the unitary implementation of the dynami€she massless scalar field in de Sitter
spacetime, we have analyzed a completely solvable toy metiath further clarifies the viability
of a unitary evolution.

Besides, we have seen that the same Fock representaticGup[sarts a unitary implementation
of the dynamics of massive free fields. It is worth remarkimat general results allow us to ensure
that the Fock representation depicted in Seg. Il is thewmigne (modulo unitary equivalence)
admitting a unitary implementation of the time evolutiorfrgfe fields in de Sitter spacetime. For-
tunately, there is no tension between this result, on thehamel, and the uniqueness provided
by imposing the Hadamard criterion, on the other hand. Letaall that, for free scalar fields
propagating on spatially compact universes, the Hadamgudbach selects a unique preferred
representation of the canonical commutation relations [Hjus, in particular, a Klein-Gordon
field ¢ in de Sitter spacetime has a unique quantum Hadamard repaéea. More specifically,
given a massive free field in de Sitter spacetime, theresaishiqued(1, 4)-invariant Fock vac-
uum state satisfying the Hadamard condition: the Bunchi€3afor Euclidean) vacuum state. In
the massless case, there are instead infinitely ni{dy-invariant Hadamard vacua,fi#iring in
their particular zero mode sector parametrization [19]wkler, since the discrepancy between
vacua involve just a finite number of degrees of freedom, tieme&von Neumann uniqueness
theorem guarantees that the family@)-invariant Hadamard vacua is, in fact, a family of uni-
tarily equivalent states. Thus, in de Sitter spacetimegtisea uniquéd(1, 4)-invariant Hadamard
guantization of a massive Klein-Gordon field, and a uniqugi{glence class ofp(4)-invariant
Hadamard quantization(s) of the massless Klein-Gordod. fidhder the time dependent canon-
ical transformation[(18), the unique Hadamard quantipatibthe fn > 0) Klein-Gordon field
¢ determines, in the scaled field descriptjpna quantum theory which is characterized by the
Cauchy data[(52,53). Our results of Séc] IV show that for aayfegative) value of the mass
parameter, this translated (unique) Hadamard quantunmthisdines a Fock quantization which
is unitarily equivalent to our Fock representation; ilee $o0 translated Hadamard quantization and
the Fock representation with unitary dynamics provide #yaloce same physical predictions. This
equivalence eliminates any concern about a possible tebsioveen the requirement of a unitary

time evolution (together with the invariance under the ighaymmetries) and the Hadamard con-
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dition in order to select a Fock representation.
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Appendix A: Equivalence with adiabatic states

For the sake of completeness, we devote this appendix tas$igbe relationship between our
Fock quantization with unitary dynamics and the use of aatialstates in de Sitter spacetime. As
it is known, adiabatic states were introduced in the latees)y Parker [30] to bring forward the
best possible definition gfarticlesin expanding universes scenarios. In the framework of dose
universes (specifically, in FRW cosmologies with= +1) two important mathematical-physics
results exist concerning adiabatic states: (i) the famihadiabatic vacua is a set of unitarily
equivalent states [29], and (ii) adiabatic states are tlyitaquivalent to Hadamard states (for
m > 0) [31]. We thus have, in particular, that the (Hadamard) @ubBavies vacuum state is
unitarily equivalent to an adiabatic state. Given the egjence between the Bunch-Davies state
and the unitary Fock vacuum state (namely, the vacuum of ock uantization with unitary time
evolution), established in Se€c. ]IV, we then conclude thatrameck vacuum is unitarily equivalent
to an adiabatic state. We will explicitly show here that oaclkestate is unitarily equivalent to the
zeroth order adiabatic vacuum state.

In order to properly compare the zeroth order adiabatic wacstate, defined in the-
description, with the unitary Fock vacuum state, definedhi $caledy-description, we will
proceed in three steps. First, we will chogsas the basic field variable. Next, we will trans-
late the Cauchy data defining the zeroth order adiabatie &tahey-description, and finally we
will compare the result with our unitary Fock vacuum statfjried by the Cauchy data (50).

Let us start by considering the field equatibn| (13) for a fiezdas field propagating in de Sitter

spacetime. By performing a mode decomposition of the fielget that the time-dependent part
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of the mode solutionsy, obey the second-orderftBrential equation

k(k + 2)
a2

+ P (A1)

OV + 3(%‘5‘) Ok +WeV =0, W =
The modesy, must satisfy, in addition, the normalization condition
QP — QP =1, VK, (A2)

whereQy = Vi (to) andP, = a0, (ty) are, respectively, the configuration and momentunficoe
cients of the fields on the Cauchy surfade-= t,.

In order to introduce adiabatic vacuum states, let us censiolutions to EqL(A1) of the form

Vi(t) =

\/Z;T(D exp(—i ﬁ t @k(f)df), (A3)
K t

where®, are real positive functions which, according to Eq.l(A1) &ud (A3), must satisfy

2a+4

20

Q2 = W2 — (A4)

4\ a Oy

3 (ata)z 382 §(at®k )2 1620,
This equation can be solved via an iterative process whergefiaite time interval and a suf-
ficiently largek are considered [29]. Thus, starting the process \@fﬁ = W, we get in the
left-hand side of Eq.[(A4) ther (+ 1)-th function@fj*l) by plugging in the right-hand side the
preceding-th solution®{".

An adiabatic vacuum state ofth order is a Fock state constructed from a solutigh to Eq.
(AT) with initial conditions(V\"(to), dv(to)), wheré

VO(to) = (A5)

to
1 exp(—i f G)(kr)(f)df).
NZEo t
We haveG)(kO) =W = [k(k +2)+ (ma)z]l/2 /a for the zeroth order, so that the Cauchy data of

the corresponding adiabatic vacuum state is given by

me .
Q = v(ko), P, = —az\/(ko) (1 + —)ata+ iaw

20

. (A6)

9 Itis worth remarking that adiabatic vacuum states are iaddpnt of the values chosen f@ndty. Indeed, diferent
choices oft in Eq. [AT) just introduce irrelevant phases, whereasmtistlections of the reference (initial) tinig
lead to equivalent vacuum states|[29].
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Now, we translate the Cauchy dafa {A6) to shelescription via the time-dependent canonical

transformation[(18),

m
a— + 2ia’w

w2 ; (A7)

10

1
k=a . = —E\ﬁk‘”

10

wherern, = 2 arctané®) [see Eq.[(D)].

Recall that the Cauchy data defining the unitary Fock vacutate sare given by Eq.[ (50),
(Uc(mo) = (Rwi)™Y?, Ue(no) = —i(wi/2)V?). Thus, the antilinear part of the Bogoliubov transforma-
tion relating the Cauchy datla (50) and (A7) reads

Bo= i (wnh—ip) = 5
k= o KOk pk_2(1—x§)1/4

R

wherex, = m/wg. The unitary Fock vacuum and the adiabatic vacuum will béaunity equivalent
states if and only i3 is square summable. It is a simple exercise to see that, iasymptotic
regime, which corresponds tq << 1, the ultraviolet behavior of beta & ~ O(k2). As a
consequence, we conclude that the unitary Fock vacuum istatguivalent to the zeroth order
adiabatic vacuum. Now, since in closed FRW spacetimes amathiabatic states of distinct order
are unitarily equivalent, we have in fact that our equivateresult extends to adiabatic states of

arbitrary order.

Appendix B: Ultraviolet behavior of the beta functions and mdficients

In this appendix, we will detail the derivation of the ultialet behavior, i.e., the behavior for
large k, of the beta functiongy(no, ) of the evolution transformation, defined in Séc.] Ill, and
of the beta cofficientsg, of the canonical transformation that relates the vacuuecsad by the
unitary evolution criterion and the Allen-Folacci vacuuwtiscussed in Se€. 1V.

Let us start by detailing the behavior for larg®f the beta functions, i.e., the antilinear part
of the evolution transformatiofi (1o, 7) introduced in Eq. [(35). We first recall the expression
of this transformation on the creation and annihilationatales in terms of the evolution of the

configuration and momentum modes,

U (m0,m) = TkUk(mo, M Tt = TuMc(mM (10) Ti ™ (B1)

The matricesM, and T, are given in Eq. [(25) and Eg[_(836), respectively. It followsnh this
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expression that the beta functions are

(=) ()

22u+1 (H—L;—Z) T (v+;£+l

M

) [AR;Sg — ASFR + iARVlSV +iw ASIRY, (B2)
Wk

ﬁk(no’ 77) =

where we have introduce the notation
AFYG; = F(- cosn)G(~- cosno) — G;(~— cosn)Fy(- cosn), (B3)

for any functionF andG. in {R;, St, R/, S.}. Besides, to compute the inverse matvig*, we

have employed the determinanthdf:

CRE=)

o () (52)
detMy(y) = sinfp W{P%(- cosn), Qi(- cosn)} =

(B4)
2 2

Here, W{-, -} denotes the Wronskian. By considering the relations betvtiee functionsP,(x)
and Q) (x) with P,(-x) andQ,,(—x), given in expression§ (80,31), one gets

AR!S! = S(cosn)R!(cosio) — Ri(cosn) S (cosno), (B5)

and similarly forAS'R, AR'SY, andAS‘R.

Using then Eqgs.[(40,41) for the asymptotic expansion of Hseaated Legendre functions, as
well as the definition[(26) of the functior® and S/, and the expressions (28]29) of their time
derivatives, one finds that the beta functions have the atappehavior

T (2k—ip+5) I (2k—ip+3) Fz (k fu+ 3/2)
,Bk(ﬂ, UO) = _22ﬂ+1r(2k+i#+5)r(2k+i#+3) F(k+ 1)F(k+ 2) JZ:O: 231(77, UO),

(B6)

where the function®;(», 70) are of asymptotic orde(D(w;j). Employing the Stirling formula for

the asymptotic behavior of the Gamma function [23],
[(z+1) ~ V2rz(z/€), (B7)

it follows that the time-independent déieient that multiplies the functior(n, no) in Eq. (B6)
behaves asymptotically &1). Therefore, the beta functions have the same ultra\belleavior as
the first nonvanishing functio®;(n, o). We will explicitly show that bothBq(, 170) andB1(1, no)
vanish, proving that the beta function is (at least) of thexgstotic orderO(wgz) ~ O(k‘z).

The functionBy(7, no) can be deduced from Ed.(B2) by considering only the leadsygnp-

totic contributions of the terms of the formF,G) in that expression. For this, one can use the
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asymptotic expansions &, S, and their time derivatives, which can be obtained from E48)
and [41) as well as Eqd._(28) and(29). With a bit of calculasl, @sing trigonometric relations,

one gets the following four leading contributions, whicmgmiate each other in pairs:

Bo(n,1m0) = —sin[(kK+ L)(p+mno) + un] + sin[(K + 1)(p+mn0) + pn]
+i cos[[(k + 1)(+no) + ur] — i cos[[(k + 1)(p+no) + ur] = 0. (B8)

On the other hand, the expression of the functily, o) can be computed in the same way,
but considering now the next leading contributions of thenteof the typeAF,G,. These are
obtained from the products of the leading and first-sublegadontributions in the asymptotic ex-
pansions oR), S!, and of their time derivatives. As before, making use ofdnigmetric relations,

one obtains

_i(k; 11)%1(;7, ) = 1 {cos[(k+ 2)i + (k+ L)no + uxr] — cos[(K + 2)n + (K + LYo + pn]
2 — siny

—isin[(k+2)y + (K+ L)go + pr] +isin[(K+ 2)p + (K+ L) + url}

+Sir:|]'770 {cos[(k+ 1)y + (K+ 2)no + ur] — cos[(k + 1)n + (K + 2)no + un|

—isin[(k+ 1)+ (K+ 2)no + ur] + i sin[(kK+ 1)7 + (K + 2)no + ux]} = 0. (B9)
Therefore, botiBq(n, no) andB,(n, o) vanish and, consequently, the asymptotic behavior of the
beta functions is given b¥,(n. 7o) (assuming that it does not vanish). Heng@y, o) ~ O (k?),
as we wanted to prove. Note that this result is valid for arlyevaf u and thus holds for every
possible mass of the scalar field. In particular, it is so & thmassless case, corresponding to
u=3/2.

Let us now study the beta cﬂieients,B_k of the transformation that relates the Allen-Folacci
vacua and the vacuum that defines the Fock representatibruwmiiary evolution. Recalling the
definition (54) of these beta cfirients, as well as the initial data that define both types ofi@a
[see expressionk (b0), (52), andl(53)], one arrives at

_ g (k) 2wy . 2. ]
Bk = —A TS‘V‘(COSno) — R(cosno) - I;S‘V‘(COSno) — iwgR(cosno) | . (B10)

2a)k
As in previous calculations, we introduce the expressidnlefunctionsR;, S, and their time

derivatives, in terms of the associated Legendre functidbhsn, from the asymptotic expansions
(40[41) of those functions, and using Hq.l(51), one findsttiebeta coicients admit an asymp-
totic expansion of the form

o = — [ 3DV 14 32) 51
P \Toru+32) 2var T+ 1) =

(B11)
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Here, ®; are functions of the asymptotic ordex(w!) ~ O(kJ). Employing again the Stirling
formula (BT), it follows that the global céiécient appearing in front of the sum of functioﬁq‘, is
of orderO(1). Therefore, as in the previous case, the asymptotia @fdbe beta coicients will

coincide with that of the first nonvanishing contributiﬁrﬂ. In this case, the functioﬁo reads

B = TR s _T KT
By = cos[(k+ 1)n0+4+ 2]+sm[(k+1)no 4+ 2]
H H
+i sm[(k + Lo LI 2 + > ] [ cos[(k+ D)o 7 4 > ] 0. (B12)

On the other hand, one can check that the funcigiis given by

= &r-1 pr e
By = 8(k+2)sinn0{ cos[(k+2)n0 ) + > ] +Sln[(k+2)170+ ) + > ]
o Toour] . e
[ S|n[(k+ 2)no 7] + > ] |cos[(k+ 2)no + ) + > ]} =0. (B13)

Therefore, as we wanted to show, the asymptotic behavidneobeta coicients is at most of
the order®, ~ O(k‘z). This guarantees their square summability (counting tlyederacy), and
hence the unitary implementation of the transformationhi ¢onsidered Fock representation.
Again, this result is independent of the valueuptind therefore is valid not only for the massless

case [t = 3/2), but also for an arbitrary mass of the scalar field.
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