41 research outputs found

    Household and personal air pollution exposure measurements from 120 communities in eight countries: Results from the PURE-AIR study

    Get PDF
    Background: Approximately 2·8 billion people are exposed to household air pollution from cooking with polluting fuels. Few monitoring studies have systematically measured health-damaging air pollutant (ie, fine particulate matter [PM2·5] and black carbon) concentrations from a wide range of cooking fuels across diverse populations. This multinational study aimed to assess the magnitude of kitchen concentrations and personal exposures to PM2·5 and black carbon in rural communities with a wide range of cooking environments.Methods: As part of the Prospective Urban and Rural Epidemiological (PURE) cohort, the PURE-AIR study was done in 120 rural communities in eight countries (Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania, and Zimbabwe). Data were collected from 2541 households and from 998 individuals (442 men and 556 women). Gravimetric (or filter-based) 48 h kitchen and personal PM2·5 measurements were collected. Light absorbance (10-5m-1) of the PM2·5 filters, a proxy for black carbon concentrations, was calculated via an image-based reflectance method. Surveys of household characteristics and cooking patterns were collected before and after the 48 h monitoring period.Findings: Monitoring of household air pollution for the PURE-AIR study was done from June, 2017, to September, 2019. A mean PM2·5 kitchen concentration gradient emerged across primary cooking fuels: gas (45 μg/m3 [95% CI 43-48]), electricity (53 μg/m3 [47-60]), coal (68 μg/m3 [61-77]), charcoal (92 μg/m3 [58-146]), agricultural or crop waste (106 μg/m3 [91-125]), wood (109 μg/m3 [102-118]), animal dung (224 μg/m3 [197-254]), and shrubs or grass (276 μg/m3 [223-342]). Among households cooking primarily with wood, average PM2·5 concentrations varied ten-fold (range: 40-380 μg/m3). Fuel stacking was prevalent (981 [39%] of 2541 households); using wood as a primary cooking fuel with clean secondary cooking fuels (eg, gas) was associated with 50% lower PM2·5 and black carbon concentrations than using only wood as a primary cooking fuel. Similar average PM2·5 personal exposures between women (67 μg/m3 [95% CI 62-72]) and men (62 [58-67]) were observed. Nearly equivalent average personal exposure to kitchen exposure ratios were observed for PM2·5 (0·79 [95% 0·71-0·88] for men and 0·82 [0·74-0·91] for women) and black carbon (0·64 [0·45-0·92] for men and 0·68 [0·46-1·02] for women).Interpretation: Using clean primary fuels substantially lowers kitchen PM2·5 concentrations. Importantly, average kitchen and personal PM2·5 measurements for all primary fuel types exceeded WHO\u27s Interim Target-1 (35 μg/m3 annual average), highlighting the need for comprehensive pollution mitigation strategies.Funding: Canadian Institutes for Health Research, National Institutes of Health

    Strategies to address inequity of uncorrected refractive error in the Western Pacific: A modified Delphi process.

    Get PDF
    PURPOSE: Uncorrected refractive error is the leading cause of vision impairment globally; however, little attention has been given to equity and access to services. This study aimed to identify and prioritise: (1) strategies to address inequity of access to refractive error services and (2) population groups to target with these strategies in five sub-regions within the Western Pacific. METHODS: We invited eye care professionals to complete a two-round online prioritisation process. In round 1, panellists nominated population groups least able to access refractive error services, and strategies to improve access. Responses were summarised and presented in round 2, where panellists ranked the groups (by extent of difficulty and size) and strategies (in terms of reach, acceptability, sustainability, feasibility and equity). Groups and strategies were scored according to their rank within each sub-region. RESULTS: Seventy five people from 17 countries completed both rounds (55% women). Regional differences were evident. Indigenous peoples were a priority group for improving access in Australasia and Southeast Asia, while East Asia identified refugees and Oceania identified rural/remote people. Across the five sub-regions, reducing out-of-pocket costs was a commonly prioritised strategy for refraction and spectacles. Australasia prioritised improving cultural safety, East Asia prioritised strengthening school eye health programmes and Oceania and Southeast Asia prioritised outreach to rural areas. CONCLUSION: These results provide policy-makers, researchers and funders with a starting point for context-specific actions to improve access to refractive error services, particularly among underserved population groups who may be left behind in existing private sector-dominated models of care

    A far-ultraviolet-driven photoevaporation flow observed in a protoplanetary disk

    Full text link
    Most low-mass stars form in stellar clusters that also contain massive stars, which are sources of far-ultraviolet (FUV) radiation. Theoretical models predict that this FUV radiation produces photo-dissociation regions (PDRs) on the surfaces of protoplanetary disks around low-mass stars, impacting planet formation within the disks. We report JWST and Atacama Large Millimetere Array observations of a FUV-irradiated protoplanetary disk in the Orion Nebula. Emission lines are detected from the PDR; modelling their kinematics and excitation allows us to constrain the physical conditions within the gas. We quantify the mass-loss rate induced by the FUV irradiation, finding it is sufficient to remove gas from the disk in less than a million years. This is rapid enough to affect giant planet formation in the disk

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Data of surface concentration of antineoplastic drugs in South American hospitals (measured by UPLC-MS/MS)

    No full text
    Replication data of surface concentration of antineoplastic drugs in South American hospitals (measured by surface wiping and UPLC-MS/MS).Fil: Speranza, Eric Demian. Universidad Nacional de La Plata. Facultad de Ciencias Naturales y Museo. Laboratorio de Química Ambiental y Biogeoquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata; ArgentinaFil: Jeronimo, Matthew. University of British Columbia; CanadáFil: Colombo, Manuel. University of British Columbia; Canad

    sj-docx-1-opp-10.1177_10781552231188320 - Supplemental material for Initial assessment of multi-compound antineoplastic drug surface contamination in Argentinean healthcare centers: Insights into occupational exposures in South America

    No full text
    Supplemental material, sj-docx-1-opp-10.1177_10781552231188320 for Initial assessment of multi-compound antineoplastic drug surface contamination in Argentinean healthcare centers: Insights into occupational exposures in South America by Eric D Speranza, Matthew Jeronimo, and Manuel Colombo in Journal of Oncology Pharmacy Practice</p

    Personal and household PM 2.5 and black carbon exposure measures and respiratory symptoms in 8 low- and middle-income countries

    No full text
    Background: Household air pollution (HAP) from cooking with solid fuels has been associated with adverse respiratory effects, but most studies use surveys of fuel use to define HAP exposure, rather than on actual air pollution exposure measurements.Objective: To examine associations between household and personal fine particulate matter (PM2.5) and black carbon (BC) measures and respiratory symptoms.Methods: As part of the Prospective Urban and Rural Epidemiology Air Pollution study, we analyzed 48-h household and personal PM2.5 and BC measurements for 870 individuals using different cooking fuels from 62 communities in 8 countries (Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania, and Zimbabwe). Self-reported respiratory symptoms were collected after monitoring. Associations between PM2.5 and BC exposures and respiratory symptoms were examined using logistic regression models, controlling for individual, household, and community covariates.Results: The median (interquartile range) of household and personal PM2.5 was 73.5 (119.1) and 65.3 (91.5) μg/m3, and for household and personal BC was 3.4 (8.3) and 2.5 (4.9) x10-5 m-1, respectively. We observed associations between household PM2.5 and wheeze (OR: 1.25; 95%CI: 1.07, 1.46), cough (OR: 1.22; 95%CI: 1.06, 1.39), and sputum (OR: 1.26; 95%CI: 1.10, 1.44), as well as exposure to household BC and wheeze (OR: 1.20; 95%CI: 1.03, 1.39) and sputum (OR: 1.20; 95%CI: 1.05, 1.36), per IQR increase. We observed associations between personal PM2.5 and wheeze (OR: 1.23; 95%CI: 1.00, 1.50) and sputum (OR: 1.19; 95%CI: 1.00, 1.41). For household PM2.5 and BC, associations were generally stronger for females compared to males. Models using an indicator variable of solid versus clean fuels resulted in larger OR estimates with less precision.Conclusions: We used measurements of household and personal air pollution for individuals using different cooking fuels and documented strong associations with respiratory symptoms

    Multinational prediction of household and personal exposure to fine particulate matter (PM2.5) in the PURE cohort study

    No full text
    Introduction: Use of polluting cooking fuels generates household air pollution (HAP) containing health-damaging levels of fine particulate matter (PM2.5). Many global epidemiological studies rely on categorical HAP exposure indicators, which are poor surrogates of measured PM2.5 levels. To quantitatively characterize HAP levels on a large scale, a multinational measurement campaign was leveraged to develop household and personal PM2.5 exposure models.Methods: The Prospective Urban and Rural Epidemiology (PURE)-AIR study included 48-hour monitoring of PM2.5 kitchen concentrations (n = 2,365) and male and/or female PM2.5 exposure monitoring (n = 910) in a subset of households in Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania and Zimbabwe. PURE-AIR measurements were combined with survey data on cooking environment characteristics in hierarchical Bayesian log-linear regression models. Model performance was evaluated using leave-one-out cross validation. Predictive models were applied to survey data from the larger PURE cohort (22,480 households; 33,554 individuals) to quantitatively estimate PM2.5 exposures.Results: The final models explained half (R2 = 54%) of the variation in kitchen PM2.5 measurements (root mean square error (RMSE) (log scale):2.22) and personal measurements (R2 = 48%; RMSE (log scale):2.08). Primary cooking fuel type, heating fuel type, country and season were highly predictive of PM2.5 kitchen concentrations. Average national PM2.5 kitchen concentrations varied nearly 3-fold among households primarily cooking with gas (20 μg/m3 (Chile); 55 μg/m3 (China)) and 12-fold among households primarily cooking with wood (36 μg/m3 (Chile)); 427 μg/m3 (Pakistan)). Average PM2.5 kitchen concentration, heating fuel type, season and secondhand smoke exposure were significant predictors of personal exposures. Modeled average PM2.5 female exposures were lower than male exposures in upper-middle/high-income countries (India, China, Colombia, Chile).Conclusion: Using survey data to estimate PM2.5 exposures on a multinational scale can cost-effectively scale up quantitative HAP measurements for disease burden assessments. The modeled PM2.5 exposures can be used in future epidemiological studies and inform policies targeting HAP reduction
    corecore