324 research outputs found

    SIEGE: Smoking Induced Epithelial Gene Expression Database

    Get PDF
    The SIEGE (Smoking Induced Epithelial Gene Expression) database is a clinical resource for compiling and analyzing gene expression data from epithelial cells of the human intra-thoracic airway. This database supports a translational research study whose goal is to profile the changes in airway gene expression that are induced by cigarette smoke. RNA is isolated from airway epithelium obtained at bronchoscopy from current-, former- and never-smoker subjects, and hybridized to Affymetrix HG-U133A Genechips, which measure the level of expression of ∼22 500 human transcripts. The microarray data generated along with relevant patient information is uploaded to SIEGE by study administrators using the database's web interface, found at http://pulm.bumc.bu.edu/siegeDB. PERL-coded scripts integrated with SIEGE perform various quality control functions including the processing, filtering and formatting of stored data. The R statistical package is used to import database expression values and execute a number of statistical analyses including t-tests, correlation coefficients and hierarchical clustering. Values from all statistical analyses can be queried through CGI-based tools and web forms found on the ‘Search’ section of the database website. Query results are embedded with graphical capabilities as well as with links to other databases containing valuable gene resources, including Entrez Gene, GO, Biocarta, GeneCards, dbSNP and the NCBI Map Viewer

    SIEGE: Smoking Induced Epithelial Gene Expression Database

    Get PDF
    The SIEGE (Smoking Induced Epithelial Gene Expression) database is a clinical resource for compiling and analyzing gene expression data from epithelial cells of the human intra-thoracic airway. This database supports a translational research study whose goal is to profile the changes in airway gene expression that are induced by cigarette smoke. RNA is isolated from airway epithelium obtained at bronchoscopy from current-, former- and never-smoker subjects, and hybridized to Affymetrix HG-U133A Genechips, which measure the level of expression of ∼22 500 human transcripts. The microarray data generated along with relevant patient information is uploaded to SIEGE by study administrators using the database's web interface, found at http://pulm.bumc.bu.edu/siegeDB. PERL-coded scripts integrated with SIEGE perform various quality control functions including the processing, filtering and formatting of stored data. The R statistical package is used to import database expression values and execute a number of statistical analyses including t-tests, correlation coefficients and hierarchical clustering. Values from all statistical analyses can be queried through CGI-based tools and web forms found on the ‘Search’ section of the database website. Query results are embedded with graphical capabilities as well as with links to other databases containing valuable gene resources, including Entrez Gene, GO, Biocarta, GeneCards, dbSNP and the NCBI Map Viewer

    Reversible and permanent effects of tobacco smoke exposure on airway epithelial gene expression

    Get PDF
    Oligonucleotide microarray analysis revealed 175 genes that are differentially expressed in large airway epithelial cells of people who currently smoke compared with those who never smoked, with 28 classified as irreversible, 6 as slowly reversible, and 139 as rapidly reversible

    Smoking-induced gene expression changes in the bronchial airway are reflected in nasal and buccal epithelium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cigarette smoking is a leading cause of preventable death and a significant cause of lung cancer and chronic obstructive pulmonary disease. Prior studies have demonstrated that smoking creates a field of molecular injury throughout the airway epithelium exposed to cigarette smoke. We have previously characterized gene expression in the bronchial epithelium of never smokers and identified the gene expression changes that occur in the mainstem bronchus in response to smoking. In this study, we explored relationships in whole-genome gene expression between extrathorcic (buccal and nasal) and intrathoracic (bronchial) epithelium in healthy current and never smokers.</p> <p>Results</p> <p>Using genes that have been previously defined as being expressed in the bronchial airway of never smokers (the "normal airway transcriptome"), we found that bronchial and nasal epithelium from non-smokers were most similar in gene expression when compared to other epithelial and nonepithelial tissues, with several antioxidant, detoxification, and structural genes being highly expressed in both the bronchus and nose. Principle component analysis of previously defined smoking-induced genes from the bronchus suggested that smoking had a similar effect on gene expression in nasal epithelium. Gene set enrichment analysis demonstrated that this set of genes was also highly enriched among the genes most altered by smoking in both nasal and buccal epithelial samples. The expression of several detoxification genes was commonly altered by smoking in all three respiratory epithelial tissues, suggesting a common airway-wide response to tobacco exposure.</p> <p>Conclusion</p> <p>Our findings support a relationship between gene expression in extra- and intrathoracic airway epithelial cells and extend the concept of a smoking-induced field of injury to epithelial cells that line the mouth and nose. This relationship could potentially be utilized to develop a non-invasive biomarker for tobacco exposure as well as a non-invasive screening or diagnostic tool providing information about individual susceptibility to smoking-induced lung diseases.</p

    Drug-gene interactions of antihypertensive medications and risk of incident cardiovascular disease: a pharmacogenomics study from the CHARGE consortium

    Get PDF
    Background Hypertension is a major risk factor for a spectrum of cardiovascular diseases (CVD), including myocardial infarction, sudden death, and stroke. In the US, over 65 million people have high blood pressure and a large proportion of these individuals are prescribed antihypertensive medications. Although large long-term clinical trials conducted in the last several decades have identified a number of effective antihypertensive treatments that reduce the risk of future clinical complications, responses to therapy and protection from cardiovascular events vary among individuals. Methods Using a genome-wide association study among 21,267 participants with pharmaceutically treated hypertension, we explored the hypothesis that genetic variants might influence or modify the effectiveness of common antihypertensive therapies on the risk of major cardiovascular outcomes. The classes of drug treatments included angiotensin-converting enzyme inhibitors, beta-blockers, calcium channel blockers, and diuretics. In the setting of the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, each study performed array-based genome-wide genotyping, imputed to HapMap Phase II reference panels, and used additive genetic models in proportional hazards or logistic regression models to evaluate drug-gene interactions for each of four therapeutic drug classes. We used meta-analysis to combine study-specific interaction estimates for approximately 2 million single nucleotide polymorphisms (SNPs) in a discovery analysis among 15,375 European Ancestry participants (3,527 CVD cases) with targeted follow-up in a case-only study of 1,751 European Ancestry GenHAT participants as well as among 4,141 African-Americans (1,267 CVD cases). Results Although drug-SNP interactions were biologically plausible, exposures and outcomes were well measured, and power was sufficient to detect modest interactions, we did not identify any statistically significant interactions from the four antihypertensive therapy meta-analyses (Pinteraction &gt; 5.0×10−8). Similarly, findings were null for meta-analyses restricted to 66 SNPs with significant main effects on coronary artery disease or blood pressure from large published genome-wide association studies (Pinteraction ≥ 0.01). Our results suggest that there are no major pharmacogenetic influences of common SNPs on the relationship between blood pressure medications and the risk of incident CVD

    Impact of Rare and Common Genetic Variants on Diabetes Diagnosis by Hemoglobin A1c in Multi-Ancestry Cohorts: The Trans-Omics for Precision Medicine Program

    Get PDF
    Hemoglobin A1c (HbA1c) is widely used to diagnose diabetes and assess glycemic control in individuals with diabetes. However, nonglycemic determinants, including genetic variation, may influence how accurately HbA1c reflects underlying glycemia. Analyzing the NHLBI Trans-Omics for Precision Medicine (TOPMed) sequence data in 10,338 individuals from five studies and four ancestries (6,158 Europeans, 3,123 African-Americans, 650 Hispanics, and 407 East Asians), we confirmed five regions associated with HbA1c (GCK in Europeans and African-Americans, HK1 in Europeans and Hispanics, FN3K and/or FN3KRP in Europeans, and G6PD in African-Americans and Hispanics) and we identified an African-ancestry-specific low-frequency variant (rs1039215 in HBG2 and HBE1, minor allele frequency (MAF) = 0.03). The most associated G6PD variant (rs1050828-T, p.Val98Met, MAF = 12% in African-Americans, MAF = 2% in Hispanics) lowered HbA1c (−0.88% in hemizygous males, −0.34% in heterozygous females) and explained 23% of HbA1c variance in African-Americans and 4% in Hispanics. Additionally, we identified a rare distinct G6PD coding variant (rs76723693, p.Leu353Pro, MAF = 0.5%; −0.98% in hemizygous males, −0.46% in heterozygous females) and detected significant association with HbA1c when aggregating rare missense variants in G6PD. We observed similar magnitude and direction of effects for rs1039215 (HBG2) and rs76723693 (G6PD) in the two largest TOPMed African American cohorts, and we replicated the rs76723693 association in the UK Biobank African-ancestry participants. These variants in G6PD and HBG2 were monomorphic in the European and Asian samples. African or Hispanic ancestry individuals carrying G6PD variants may be underdiagnosed for diabetes when screened with HbA1c. Thus, assessment of these variants should be considered for incorporation into precision medicine approaches for diabetes diagnosis

    Comparison of Proteomic and Transcriptomic Profiles in the Bronchial Airway Epithelium of Current and Never Smokers

    Get PDF
    Although prior studies have demonstrated a smoking-induced field of molecular injury throughout the lung and airway, the impact of smoking on the airway epithelial proteome and its relationship to smoking-related changes in the airway transcriptome are unclear.Airway epithelial cells were obtained from never (n = 5) and current (n = 5) smokers by brushing the mainstem bronchus. Proteins were separated by one dimensional polyacrylamide gel electrophoresis (1D-PAGE). After in-gel digestion, tryptic peptides were processed via liquid chromatography/ tandem mass spectrometry (LC-MS/MS) and proteins identified. RNA from the same samples was hybridized to HG-U133A microarrays. Protein detection was compared to RNA expression in the current study and a previously published airway dataset. The functional properties of many of the 197 proteins detected in a majority of never smokers were similar to those observed in the never smoker airway transcriptome. LC-MS/MS identified 23 proteins that differed between never and current smokers. Western blotting confirmed the smoking-related changes of PLUNC, P4HB1, and uteroglobin protein levels. Many of the proteins differentially detected between never and current smokers were also altered at the level of gene expression in this cohort and the prior airway transcriptome study. There was a strong association between protein detection and expression of its corresponding transcript within the same sample, with 86% of the proteins detected by LC-MS/MS having a detectable corresponding probeset by microarray in the same sample. Forty-one proteins identified by LC-MS/MS lacked detectable expression of a corresponding transcript and were detected in <or=5% of airway samples from a previously published dataset.1D-PAGE coupled with LC-MS/MS effectively profiled the airway epithelium proteome and identified proteins expressed at different levels as a result of cigarette smoke exposure. While there was a strong correlation between protein and transcript detection within the same sample, we also identified proteins whose corresponding transcripts were not detected by microarray. This noninvasive approach to proteomic profiling of airway epithelium may provide additional insights into the field of injury induced by tobacco exposure
    corecore