26 research outputs found

    Increased tolerance of Litopenaeus vannamei to white spot syndrome virus (WSSV) infection after oral application of the viral envelope protein VP28

    Get PDF
    It has been generally accepted that invertebrates such as shrimp do not have an adaptive immune response system comparable to that of vertebrates. However, in the last few years, several studies have suggested the existence of such a response in invertebrates. In one of these studies, the shrimp Penaeus monodon showed increased protection against white spot syndrome virus (WSSV) using a recombinant VP28 envelope protein of WSSV. In an effort to further investigate whether this increased protection is limited to P. monodon or can be extended to other penaeid shrimp, experiments were performed using the Pacific white shrimp Litopenaeus vannamei. As found with P. monodon, a significantly lower cumulative mortality for VP28-fed shrimp was found compared to the controls. These experiments demonstrate that there is potential to use oral application of specific proteins to protect the 2 most important cultured shrimp species, P. monodon and L. vannamei, against WSSV. Most likely, this increased protection is based on a shared and, therefore, general defence mechanism present in all shrimp species. This makes the design of intervention strategies against pathogens based on defined proteins a viable option for shrimp cultur

    The influence of CpG and UpA dinucleotide frequencies on RNA virus replication and characterization of the innate cellular pathways underlying virus attenuation and enhanced replication

    Get PDF
    Most RNA viruses infecting mammals and other vertebrates show profound suppression of CpG and UpA dinucleotide frequencies. To investigate this functionally, mutants of the picornavirus, echovirus 7 (E7), were constructed with altered CpG and UpA compositions in two 1.1–1.3 Kbase regions. Those with increased frequencies of CpG and UpA showed impaired replication kinetics and higher RNA/infectivity ratios compared with wild-type virus. Remarkably, mutants with CpGs and UpAs removed showed enhanced replication, larger plaques and rapidly outcompeted wild-type virus on co-infections. Luciferase-expressing E7 sub-genomic replicons with CpGs and UpAs removed from the reporter gene showed 100-fold greater luminescence. E7 and mutants were equivalently sensitive to exogenously added interferon-β, showed no evidence for differential recognition by ADAR1 or pattern recognition receptors RIG-I, MDA5 or PKR. However, kinase inhibitors roscovitine and C16 partially or entirely reversed the attenuated phenotype of high CpG and UpA mutants, potentially through inhibition of currently uncharacterized pattern recognition receptors that respond to RNA composition. Generating viruses with enhanced replication kinetics has applications in vaccine production and reporter gene construction. More fundamentally, the findings introduce a new evolutionary paradigm where dinucleotide composition of viral genomes is subjected to selection pressures independently of coding capacity and profoundly influences host–pathogen interactions

    Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response

    Get PDF
    Summary: Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-β and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells. : In order to survive viral infections, cells activate the expression of antiviral cytokines such as IFN-β. Witteveldt et al. show that this response alters the production of miRNAs by regulating the Microprocessor complex and that this regulation is necessary for the robust production of IFN-β. Keywords: microRNAs, microprocessor, DGCR8, Drosha, type I interferon, dsRNA, antivira

    Antiviral defence mechanisms during early mammalian development

    Get PDF
    The type I interferon (IFN) response constitutes the major innate immune pathway against viruses in mammals. Despite its critical importance for antiviral defence, this pathway is inactive during early embryonic development. There seems to be an incompatibility between the IFN response and pluripotency, the ability of embryonic cells to develop into any cell type of an adult organism. Instead, pluripotent cells employ alternative ways to defend from viruses which are typically associated with safeguard mechanisms against transposable elements. The absence of an inducible IFN response in pluripotent cells and the constitutive activation of the alternative antiviral pathways have led to the hypothesis that embryonic cells are highly resistant to viruses. However, some findings challenge this interpretation. We have performed a meta-analysis which suggest that susceptibility of pluripotent cells to viruses is directly correlated with the presence of receptors or co-receptors for viral adhesion and entry. These results challenge the current view of pluripotent cells as intrinsically resistant to infections and raises the fundamental question of why these cells have sacrificed the major antiviral defence pathway if this renders them susceptible to viruses

    Influence of genome-scale RNA structure disruption on the replication of murine norovirus--similar replication kinetics in cell culture but attenuation of viral fitness in vivo

    Get PDF
    Mechanisms by which certain RNA viruses, such as hepatitis C virus, establish persistent infections and cause chronic disease are of fundamental importance in viral pathogenesis. Mammalian positive-stranded RNA viruses establishing persistence typically possess genome-scale ordered RNA secondary structure (GORS) in their genomes. Murine norovirus (MNV) persists in immunocompetent mice and provides an experimental model to functionally characterize GORS. Substitution mutants were constructed with coding sequences in NS3/4- and NS6/7-coding regions replaced with sequences with identical coding and (di-)nucleotide composition but disrupted RNA secondary structure (F1, F2, F1/F2 mutants). Mutants replicated with similar kinetics to wild-type (WT) MNV3 in RAW264.7 cells and primary macrophages, exhibited similar (highly restricted) induction and susceptibility to interferon-coupled cellular responses and equal replication fitness by serial passaging of co-cultures. In vivo, both WT and F1/F2 mutant viruses persistently infected mice, although F1, F2 and F1/F2 mutant viruses were rapidly eliminated 1–7 days post-inoculation in competition experiments with WT. F1/F2 mutants recovered from tissues at 9 months showed higher synonymous substitution rates than WT and nucleotide substitutions that potentially restored of RNA secondary structure. GORS plays no role in basic replication of MNV but potentially contributes to viral fitness and persistence in vivo

    Sensing of transposable elements by the antiviral innate immune system

    Get PDF
    We thank Dr. Francisco Sanchez-Luque, Dr. Martin Reijns, and Priscilla Chin for helpful discussions and comments on the manuscript. This work was funded by grants from the Wellcome Trust 107665/Z/15/Z and Royal Society grant RGS\R1\191368 to S.M., and from MINECO SAF2015-71589-P and Ramon y Cajal grant RYC-2016-21395 to S.R.H. Figures were designed using Smart Servier Medical Art (https://smart.servier.com).Around half of the genomes in mammals are composed of transposable elements (TEs) such as DNA transposons and retrotransposons. Several mechanisms have evolved to prevent their activity and the detrimental impact of their insertional mutagenesis. Despite these potentially negative effects, TEs are essential drivers of evolution, and in certain settings, beneficial to their hosts. For instance, TEs have rewired the antiviral gene regulatory network and are required for early embryonic development. However, due to structural similarities between TE-derived and viral nucleic acids, cells can misidentify TEs as invading viruses and trigger the major antiviral innate immune pathway, the type I interferon (IFN) response. This review will focus on the different settings in which the role of TE-mediated IFN activation has been documented, including cancer and senescence. Importantly, TEs may also play a causative role in the development of complex autoimmune diseases characterized by constitutive type I IFN activation. All these observations suggest the presence of strong but opposing forces driving the coevolution of TEs and antiviral defense. A better biological understanding of the TE replicative cycle as well as of the antiviral nucleic acid sensing mechanisms will provide insights into how these two biological processes interact and will help to design better strategies to treat human diseases characterized by aberrant TE expression and/ or type I IFN activation.Wellcome TrustEuropean Commission 107665/Z/15/ZRoyal Society of London RGS\R1\191368MINECO SAF2015-71589-PSpanish Government RYC-2016-2139

    White spot syndrome virus envelope protein VP28 is involved in the systemic infection of shrimp

    Get PDF
    AbstractWhite spot syndrome virus (WSSV) is a large DNA virus infecting shrimp and other crustaceans. The virus particles contain at least five major virion proteins, of which three (VP26, VP24, and VP15) are present in the rod-shaped nucleocapsid and two (VP28 and VP19) reside in the envelope. The mode of entry and systemic infection of WSSV in the black tiger shrimp, Penaeus monodon, and the role of these proteins in these processes are not known. A specific polyclonal antibody was generated against the major envelope protein VP28 using a baculovirus expression vector system. The VP28 antiserum was able to neutralize WSSV infection of P. monodon in a concentration-dependent manner upon intramuscular injection. This result suggests that VP28 is located on the surface of the virus particle and is likely to play a key role in the initial steps of the systemic WSSV infection in shrimp

    Enhancement of the replication of HCV replicons of genotypes 1-4 by manipulation of CpG and UpA dinucleotide frequencies and use of cell lines expressing SECL14L2 - application for antiviral resistance testing

    Get PDF
    Treatment for hepatitis C virus (HCV) has improved greatly through the use of direct-acting antivirals (DAAs). However, their effectiveness and potential for drug resistance development in non-genotype 1 variants of HCV remain relatively unexplored, as in vitro assays to assess drug susceptibility are poorly developed and unsuited for a transient-transfection format. In the current study, we have evaluated the effects of dinucleotide frequency changes in the replicon and the use of a SEC14L2-expressing cell line on the replication of HCVs of different genotypes and evaluated the resulting assay formats for measurements of susceptibility to the DAA sofosbuvir. Removal of CpG and UpA dinucleotides from the luciferase gene used in HCV replicons of genotype 1b (Con1) and genotype 2a (JFH-1) achieved between 10- and 100-fold enhancement of replication over that of the wild type posttransfection. Removal of CpG and UpA dinucleotides in the neomycin gene or deletion of the whole gene in replicons of genotype 3a (S52) and genotype 4a (ED43) enhanced replication, but phenotypic effects on altering luciferase gene composition were minimal. A further 10-fold replication enhancement of replicons from all four genotypes was achieved by using a transgenic Huh7.5 cell line expressing SECL14L2, whose expression showed a dose-dependent effect on HCV replication that was reversible by small interfering RNA (siRNA) knockdown of gene expression. By combining these strategies, the 100- to 1,000-fold enhancement of replication allowed the susceptibility of all four genotypes to the RNA polymerase inhibitor sofosbuvir to be robustly determined in a transient-transfection assay format. These methods of replication enhancement provide new tools for monitoring the susceptibility and resistance of a wide range of HCV genotypes to DAAs
    corecore