
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Antiviral defence mechanisms during early mammalian
development

Citation for published version:
Mueller, F, Witteveldt, J & Macias Ribela, S 2024, 'Antiviral defence mechanisms during early mammalian
development', Viruses, vol. 16, no. 2, 173. https://doi.org/10.3390/v16020173

Digital Object Identifier (DOI):
10.3390/v16020173

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Viruses

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 11. Feb. 2024

https://doi.org/10.3390/v16020173
https://doi.org/10.3390/v16020173
https://www.research.ed.ac.uk/en/publications/9fbfe35e-c469-4f31-b9b1-e143a435edf6


Citation: Mueller, F.; Witteveldt, J.;

Macias, S. Antiviral Defence

Mechanisms during Early

Mammalian Development. Viruses

2024, 16, 173. https://doi.org/

10.3390/v16020173

Academic Editor: Alfredo Castello

Received: 14 December 2023

Revised: 11 January 2024

Accepted: 20 January 2024

Published: 24 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

viruses

Review

Antiviral Defence Mechanisms during Early
Mammalian Development
Felix Mueller 1,2,†, Jeroen Witteveldt 1,† and Sara Macias 1,*

1 Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh,
King’s Buildings, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK; f.mueller@sms.ed.ac.uk (F.M.);
jeroen.witteveldt@ed.ac.uk (J.W.)

2 Centre for Virus Research, MRC-University of Glasgow, Garscube Campus, 464 Bearsden Road,
Glasgow G61 1QH, UK

* Correspondence: smacias@ed.ac.uk
† These authors contributed equally to this work.

Abstract: The type-I interferon (IFN) response constitutes the major innate immune pathway against
viruses in mammals. Despite its critical importance for antiviral defence, this pathway is inactive
during early embryonic development. There seems to be an incompatibility between the IFN
response and pluripotency, the ability of embryonic cells to develop into any cell type of an adult
organism. Instead, pluripotent cells employ alternative ways to defend against viruses that are
typically associated with safeguard mechanisms against transposable elements. The absence of an
inducible IFN response in pluripotent cells and the constitutive activation of the alternative antiviral
pathways have led to the hypothesis that embryonic cells are highly resistant to viruses. However,
some findings challenge this interpretation. We have performed a meta-analysis that suggests that
the susceptibility of pluripotent cells to viruses is directly correlated with the presence of receptors
or co-receptors for viral adhesion and entry. These results challenge the current view of pluripotent
cells as intrinsically resistant to infections and raise the fundamental question of why these cells have
sacrificed the major antiviral defence pathway if this renders them susceptible to viruses.

Keywords: antiviral; interferon; innate immunity; virus; dsRNA; transposable element; transposon;
embryonic stem cells; development; blastocyst

1. Introduction

During the early stages of mammalian development, both the cells and embryonic
structures critical for supporting embryogenesis and formation of all the tissues of the adult
organism are established. After fertilisation, embryonic cells transition from a toti-potent to
a pluripotent state during the establishment of the blastocyst [1]. The blastocyst consists of
two distinct structures: the inner cell mass from which human and mouse embryonic stem
cells (ESCs) are derived and the outer layer of cells, or trophoblast, that will form the foetal
component of the placenta. Despite the importance of these early stages in embryonic
development, early embryos are unable to utilise one of the most important pathways to
defend from viruses, the type-I interferon (IFN) response. In this review, we will focus on
the regulation of this innate immune pathway during embryonic development, the use of
alternative antiviral strategies by pluripotent cells, and review the critical role of specific
RNA-binding proteins in providing antiviral defence during this stage. Our meta-analysis
suggests that despite the existence of alternative antiviral pathways, pluripotent cells are
not generally resistant to viral infections. We have also found that the susceptibility of
pluripotent cells to viruses seems to correlate with the expression of viral receptors and co-
receptors. This challenges our current view of pluripotent cells being intrinsically immune
to viruses.
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2. The Type-I IFN Response and Early Development

The major innate immune response against viruses is the type-I IFN response. IFNs
are secreted upon infection and are sensed by both the infected and neighbouring cells,
resulting in the induction of a large group of interferon-stimulated genes (ISGs) [2]. Besides
this immediate cellular response, type I IFNs are also responsible for priming the adaptive
immune system through the activation of dendritic cells [3,4]. As triggering the IFN
response has profound consequences at both the cellular and organism level, a tight
regulation of its induction and consequent downregulation is crucial [5]. To ensure its
correct activation, cells have developed specialised sensor-proteins, or pattern recognition
receptors (PRRs), capable of recognising different virus-specific hallmarks or pathogen-
associated molecular patterns (PAMPs). One of the most prominent viral PAMPs is the
virus-derived nucleic acids. PRRs have evolved to recognise types of nucleic acids that are
typically not present in mammalian cells or specific cellular compartments and that only
accumulate upon viral infection. These include long double-stranded RNAs (dsRNAs),
short dsRNAs with either 5′ di- or triphosphate ends and cytoplasmic DNA [6].

Several families of PRRs are involved in the recognition of viral RNA PAMPs. These
include the cytoplasmic RIG-I-like receptor family (RLR), composed of the retinoic acid-
inducible gene-I (RIG-I), the melanoma differentiation-associated protein 5 (MDA5) and
the laboratory of genetics and physiology 2 (LGP2), in addition to the endosomal Toll-like
receptor (TLR) family. Aside from these, individual proteins can act as PRRs for viral
DNA, such as the cyclic GMP-AMP synthase (cGAS) for cytosolic DNA, the interferon-
gamma inducible protein 16 (IFI16) for both nuclear and cytosolic DNA and the absent
in melanoma 2 (AIM2) for cytosolic DNA. Upon recognition of the viral nucleic acids,
these sensors activate downstream signalling through essential adaptor proteins such
as the mitochondrial antiviral signalling (MAVS) protein for the RLR receptors, the TIR
domain-containing adaptor molecule 1 (TICAM1) and the MYD88 innate immune signal
transduction adaptor (MYD88) for the TLR pathways, and the stimulator of interferon
response cGAMP interactor 1 (STING) for cGAS signalling. Although these signalling
cascades are different, they all culminate in the expression of type I IFNs through the
activation of the interferon regulatory factors 3 and 7 (IRF3/7) [7,8]. After expression and
secretion, type-I IFNs signal in an auto- and paracrine manner by binding to the surface
type-I IFN receptor (interferon alpha and beta receptor subunit 1 and 2, IFNAR1/2) in both
the infected but also neighbouring cells. The binding of IFNs to IFNAR1/2 leads to the
phosphorylation and dimerization of STAT1 and 2 (the signal transducer and activator
of transcription 1 and 2), which translocate to the nucleus to initiate the transcription of
hundreds of ISGs, which are responsible for establishing an antiviral cellular state and
stimulating the adaptive immune response (Figure 1A) [9].

Despite the crucial importance of IFNs for antiviral defence, there seems to be an
incompatibility between the ability to produce IFNs and pluripotency. For instance, cells
derived from murine embryonic teratocarcinomas, which still retain certain pluripotent
capacity, cannot produce IFNs in response to viral infections or stimulation with the viral
mimic, dsRNA. These cells also appear to have a much-reduced response to stimulation
with exogenous IFNs, as pre-treatment with IFNs does not improve protection from viral
infection. Interestingly, the ability to produce IFNs and respond to exogenous IFNs is
acquired after differentiation [10–12]. Similar results were obtained with both mouse and
human embryonic stem cells (ESCs) as well as human induced pluripotent stem cells
(hiPSCs) [13–17]. The absence of IFN production in hiPSCs is intriguing, as these cells
originate from somatic IFN-competent cells but lose the ability to produce IFNs when
reprogrammed to become pluripotent. Aside from ESCs, mouse oocytes are also incapable
of producing IFNs when stimulated with dsRNAs. Instead, oocytes show an efficient RNA
interference (RNAi) response, an antiviral system classically attributed to non-vertebrate
organisms, which will be described in more detail in the next section [18,19]. Similar
observations have been made in rat spermatogonia and human testis explants, which both
fail to induce an IFN response upon viral infection or dsRNA (poly I:C) treatment [20–22].
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These results suggest that the absence of a functional IFN response is characteristic of
pluripotent cells, as well as gametes. Instead, adult stem cells and trophoblasts do appear
to have a functional IFN response [23,24]. Aside from viruses and dsRNA, mouse ESCs are
also not capable of activating an innate immune response against viral DNA mimics such as
G3-YSD, lipopolysaccharide (LPS, which mimics bacterial infections) or bacteria [17,25,26].
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Figure 1. Overview of the antiviral responses of somatic vs. pluripotent cells. (A) Somatic cells
have specialised cytoplasmic receptors that sense viral double-stranded RNAs (dsRNAs). These
sensors include RIG-I and MDA5, which signal through MAVS to activate the transcription factors
IRF3/7, leading to the expression of type I IFNs. Secreted IFNs bind the IFNAR1 and 2 receptors, and
through JAK/STAT signalling, lead to the expression of hundreds of ISGs and establishment of an
antiviral state. (B) Contrary to somatic cells, pluripotent cells lack a functional IFN response and fail
to produce type I IFNs upon challenge with viruses or viral mimics. Instead, pluripotent cells rely
on alternative strategies, including (1) RNA interference, where viral dsRNAs are cleaved by Dicer
to generate antiviral siRNAs, which are loaded onto the RNA-induced silencing complex (RISC),
(2) RNase H1-mediated degradation of viral RNA (ERASE) after generation of viral DNA/RNA
hybrids and, (3) constitutive or intrinsic expression of a subset of ISGs.
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The mechanisms responsible for silencing the IFN response in pluripotent cells have
still not been completely elucidated. Thus far, low expression of critical PRRs and silencing
of key innate immune genes by miRNAs have been associated with a poor ability to
produce IFNs by ESCs. For instance, mouse and human ESCs and iPSCs are known to
express low levels of MDA5 and TLR3 while maintaining similar levels of RIG-I compared
to differentiated cells [13,14,16,27]. In addition, an ESC-specific miRNA was shown to
silence MAVS expression in mouse ESCs, leading to inactivation of the whole RLR-sensing
pathway. Both removal of the miRNA and ectopic expression of MAVS reconstituted a
functional IFN response [17]. A possible mechanism explaining the poor response of hESCs
to exogenous IFNs was suggested by Hong and Carmichael [15]. They reported high
expression of the suppressor of cytokine signalling 1 (SOCS1) in hESCs, which decreased
upon differentiation. Normally, this protein is expressed as part of a negative feedback
loop of STAT1 signalling but was found to be responsible for dampening the response to
IFNs in hESCs.

3. Alternative Antiviral Responses during Early Embryonic Development

The absence of a functional IFN response may pose a strong evolutionary force to
develop alternative antiviral mechanisms. Thus far, three distinct alternative antiviral
responses have been described in ESCs: antiviral RNAi, ERASE and the constitutive or
intrinsic expression of a subset of ISGs (Figure 1B) [28–32]. Due to the high levels of activity
of transposable elements (TEs) during early development and the viral origin of some TE
families, some of the mechanisms acting to control the potentially deleterious effects of TEs
during development also provide some level of antiviral defence [33].

3.1. Mammalian Antiviral RNAi

Since 2013, several reports have suggested a role for antiviral RNAi in mammalian so-
matic but also pluripotent cells [28,29,34–36]. RNAi is a post-transcriptional gene-silencing
mechanism orchestrated by the RNA endonuclease activity of Dicer and the slicing activity
of Argonaute (Ago2 in mammals) [37–40]. Antiviral RNAi starts by Dicer binding and
cleaving long viral-derived dsRNAs into 21- to 23-nucleotide long small interfering RNAs
(siRNAs). These siRNAs are next loaded onto the RNA-induced silencing complex (RISC)
with Ago2, driving recognition by base-pairing of its cognate viral RNA. Upon binding,
the viral target RNA is cleaved by Ago2, resulting in reduced viral RNA availability for
replication and egress [41,42].

Typically, organisms where RNAi is crucial for antiviral defence express multiple Dicer
genes, with forms designated for antiviral RNAi and others specialised in endogenous small
RNA production, including microRNAs (miRNAs) [43]. In contrast, mammals express a
single Dicer gene (DICER1) that is involved in both miRNA and siRNA biogenesis [44,45].
Despite its involvement in both biogenesis pathways, Dicer cleaves precursor miRNA
substrates more efficiently than long dsRNAs, from which siRNAs can originate [36]. Inter-
estingly, truncation of the N-terminal helicase domain of human Dicer leads to increased
cleavage of perfectly complementary dsRNAs compared to full-length Dicer. Truncated
Dicer generates siRNAs that are loaded onto the RISC complex and are able to inhibit the
expression of target mRNAs, including viral RNAs [46]. A naturally occurring isoform
of Dicer lacking the N-terminal helicase domain (DicerO) was found in mouse oocytes
and also exhibited a more efficient cleavage of long dsRNAs compared to full-length
Dicer [47]. Another natural, RNAi-proficient isoform of Dicer was detected in both a range
of pluripotent and somatic mouse cells, but also in humans, including hESCs, hiPSCs and
somatic cell lines [30]. Overexpression of this isoform (aviD) in DICER1−/− cells restored
miRNA expression but also showed antiviral activity, with decreased Sindbis or Zika virus
production. AviD is an alternatively spliced isoform of Dicer, lacking exons 7 and 8, which
encode for one of the three helicase domains previously implicated in inhibiting siRNA
processivity [46–48]. For the efficient processing of miRNA and siRNA substrates, the
N-terminal helicase domain of Dicer needs to associate with its endonucleolytic RNase IIIb
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domain. While the N-terminal helicase domain of non-vertebrates allows for a certain struc-
tural flexibility and can change its conformation to accommodate different RNA substrates,
the helicase domain of mammalian Dicer retains its conformation during RNA binding,
limiting its potential substrates to shorter RNAs, including pre-miRNAs or shRNAs [49,50].
Thus, deletions within the N-terminal domain might help overcome these structural lim-
itations and promote the processing of long dsRNA substrates, including those that are
produced during viral replication [30,46,47]. However, whether the RNAi-based antiviral
response plays a meaningful role in mammalian antiviral immunity remains unclear, as
Dicer inactivation results in both siRNA and miRNA biogenesis inactivation, but also
increased IFN responses [17,30,51].

Aside from its antiviral role, RNAi is also involved in the suppression of TEs. This
functional overlap possibly stems from the shared evolutionary origin between some TE
families and viruses. Knock-down of Dicer in early mouse embryos leads to increased levels
of two types of autonomous long-terminal repeat (LTR) retrotransposons, the Intracisternal
A-Particles (IAP) and the murine endogenous retrovirus-L (MERVL) [52]. This was later
corroborated in mESC Dicer knockout cell lines and mouse oocytes, which both showed
an increased expression of ERVs, but also of other types of TEs, including the long- and
short-interspersed nuclear elements (LINEs and SINEs) [47,53–59].

While ESCs can produce IFNs upon differentiation, the relevance of RNAi-mediated
antiviral responses is suggested to decrease after differentiation [28–30,32,60]. It is, there-
fore, hypothesised that the IFN and RNAi responses can inhibit each other. Despite
this, antiviral RNAi has been detected in non-pluripotent cell lines, including A549,
HEK293T, BHK-21 and primary murine lung fibroblasts (MLFs) [34,35]. Supporting the
cross-inhibition of RNAi and IFNs, Witteveldt et al. [17] demonstrated that in the absence of
the central factor for RNAi, Dicer, mESCs become capable of synthesising IFNs [17]. In turn,
inactivation of the IFN response in somatic cells results in detectable RNAi activity [61]
and some ISGs, such as LGP2, can inhibit antiviral Dicer activity in somatic cells [62]. The
underlying mechanisms behind this apparent incompatibility between the RNAi and IFN
response remain to be fully elucidated [7]. Furthermore, the functional role of antiviral
RNAi compared to the IFN response remains to be determined.

3.2. Intrinsic Expression of ISGs

ISGs are the ultimate effector proteins that establish the antiviral state in mammalian
cells. Most ISGs are generally lowly expressed in homeostatic conditions and are only
induced upon activation of the JAK/STAT pathway [63,64]. However, pluripotent cells,
including ESCs, adult tissue stem cells and iPSCs, constitutively express a subset of ISGs,
suggesting that these cell types display a basal and intrinsic antiviral state [32,60]. This
subset of ISGs corresponds to the top 20% of the highest expressed genes in both mouse
and human ESCs, and its composition varies in a stage- and species-specific manner.
Interestingly, ISGs that are known to have antiproliferative or pro-apoptotic properties,
such as CH25H, TNFSF10 or IFI27, are not detected in ESCs, as these could interfere
with embryogenesis [32,60,65–67]. Moreover, activation of the type-I IFN response re-
sults in defects with the differentiation of pluripotent cells [16,67]. Twenty-one ISGs
have been identified as highly expressed in human ESCs, while 22 ISGs are considered
highly expressed in mouse ESCs. Only 10 ISGs are shared between mouse and human
ESCs, including members of the IFITM family, which are known to be potent antiviral
factors [32,60,68–70]. Two of the highly expressed ISGs—Mov10 in mESCs and ADAR
in hESCs—are also RNA-binding proteins (RBPs) and are especially interesting, as they
are known to be involved in the regulation of both viral- and TE-derived RNAs. These
represent additional examples of the functional overlap between TE control and antiviral
defence in early development [71–76].
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3.2.1. Adenosine Deaminase RNA Specific (ADAR)

Adar is a deaminase enzyme that acts on dsRNA, converting adenosines (A) to in-
osines (I) (A-I) [77–80]. This activity mutates nucleic acid sequences, as well as disrupts
dsRNA structures. In human ESCs, ADAR (also known as ADAR1) is one of the highly
expressed ISGs in the absence of infection [32]. ADAR can edit both virus- and TE-derived
dsRNAs, and depending on the virus, deamination can have pro- or anti-viral conse-
quences [81–85]. ADAR and ADARB1 have been reported to target all types of viruses
(RNA and DNA viruses). For instance, Adar has been suggested to act as an antiviral
factor against Encephalomyocarditis virus (EMCV) [86]. This virus forms circular RNA
intermediates during replication, which are inaccessible for PKR binding and consequent
immune responses. Adar can destabilise the stem structure of the circular RNAs by editing
specific sequences, so-called reverse complementary matches (RCM), enabling the binding
of PKR [87,88].

In addition to viruses, Adar can edit cellular RNAs. For instance, binding and editing
of endogenous TE-derived dsRNAs prevents aberrant innate immune activation by MDA5
and PKR. This function is important for embryonic development, as Adar−/− mice are
embryonically lethal (E11.5-12.5), and the lethality can be partially reverted by knocking
out MDA5 and/or MAVS or fully reverted to birth by knocking out both PKR and MDA5.
These findings suggest that activation of the IFN response and the mRNA translational
shutoff are toxic for embryonic development [89–103]. In humans, inactivating mutations
of ADAR are associated with type-I interferonopathy, Aicardi-Goutières syndrome. Patients
show a constitutive activation of the IFN response, probably due to the accumulation of
unedited dsRNAs [98,104].

Besides its role in immunity, both ADAR (ADAR1) and ADARB1 (ADAR2) have been
shown to restrict human Alu and LINE-1 retrotransposons. Alu elements are primate-
specific SINEs that make up to 10% of the human genome and are one of the major cellular
targets for Adar [105,106]. Due to their repetitive nature, Alu elements are prone to form
dsRNA secondary structures through complementary pairing between copies inserted
in sense and antisense orientation. Adar can disrupt these structures through A-to-I
conversion, which is reminiscent of the mechanism by which Adar restricts EMCV. LINE-1
is restricted by interactions of Adar(s) with the LINE-1 RNP complex, potentially interfering
with the retrotransposition cycle. This function seems to be editing-independent, as both
ADAR and ADARB1 mutants lacking deaminase activity remained capable of restricting
LINE-1 mobilisation [75,105–108]. While ADAR most likely drives the LINE-1 RNP into
stress granules, ADARB1 acts within the nucleus [107,109]. Although the mechanisms
by which Adar(s) inhibit the LINE-1 retrotransposon are not fully clarified, it shows the
versatile function of these proteins in viral and TE defence and its importance in restricting
aberrant innate immunity in mice and humans [33].

3.2.2. Moloney Leukaemia Virus 10 (MOV10)

MOV10 is an ATP-dependent RNA helicase that was originally identified as an an-
tiviral restriction factor against Molony murine leukaemia virus (MMLV) in mice. It is
also one of the highly expressed ISGs in mESCs [32,110]. Since its discovery, it has been
found to interact with other viruses, including Human Immunodeficiency Virus-1 (HIV-1),
Influenza A virus (IAV) and Hepatitis B and C virus (HBV, HCV). The effect of MOV10
during infection appears variable and has been reported to be both pro- and anti-viral,
depending on the virus or on the phase of the viral lifecycle that is affected [74]. Besides its
role in viral infections, MOV10 has also been reported to strongly repress LINE-1 and IAP
retrotransposition by various mechanisms [111,112]. First, MOV10 was shown to impair
the retrotranscriptase activity of both IAP and LINE-1 elements [113]. Second, MOV10
in complex with RNase H2 was shown to inhibit LINE-1 retrotransposition by limiting
the formation of DNA–RNA heteroduplexes during target-primed reverse transcription
(TPRT) [114]. However, these findings contradict the role of RNAse H2 in other settings
where it was found to facilitate LINE-1 retrotransposition [115,116]. More recently, MOV10
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has been shown to facilitate the addition of non-templated uridines at the 3′-end of LINE-1
RNA by the terminal uridyltransferases (TUTases) 4/7. Introducing uridines at the 3′-end
can trigger both LINE-1 RNA decay but also inhibit the TPRT process, as this requires com-
plementarity of the poly-A tail with the T-rich insertion target sites [117]. Importantly, the
absence of MOV10 is embryonic lethal, possibly because of its role in restricting potentially
deleterious TE activity [112,118].

3.3. ERASE (Endogenous RTase/RNase H-Mediated Antiviral System)

Recently, an IFN and RNAi-independent antiviral mechanism in mouse ESCs, termed
ERASE (Endogenous Reverse transcriptase (RTase)/RNase H-mediated antiviral system),
has been identified. This mechanism relies on the ERV-derived reverse transcriptase
activity and the endogenous RNase H1 enzyme [31]. RNase H1 belongs to the RNase H
superfamily and degrades the RNA strand in RNA–DNA duplexes. Although it is unclear
if RNase H1 can also regulate TE activity, it has been shown to partially rescue the LINE-1
retrotransposition defects of RNase H2 knockout cells [115,119]. In ERASE, viral RNAs are
first reverse-transcribed to cDNA by the RTases from ERVs, resulting in DNA/RNA hybrids,
which are next degraded by the host RNase H1 [31]. This process seems to require specific
RTases. While overexpression of the full-length MusD ERV inhibited Encephalomyocarditis
virus (EMCV) infection in mESCs, overexpression of the IAPs and LINE-1, which also
encode their own RT enzyme, only had a minor effect. Inhibition of MusD-derived RTase by
the RTase inhibitor azidothymidine (AZT) diminished the observed antiviral activity. Since
mammals encode a wide variety of RTases, Wu et al. hypothesise that other TE-derived
RTases might also be capable of acting in this manner [31].

4. Are Pluripotent Cells Insensitive to Viral Infections?

The presence of ESC-specific antiviral mechanisms and the initially limited number of
viruses capable of establishing a successful infection in pluripotent cells led to the general
assumption that ESCs are resistant to viruses. In more recent years, an increasing number
of successful viral infection models, and even examples of viruses that infect ESCs better
than somatic IFN-competent cells, have been reported [17]. An explanation for these obser-
vations could be due to one aspect of the viral lifecycle that is rarely addressed, which is the
expression of essential (co-) receptors for viral binding and entry on the host cells. There is
an enormous variation in the expression of receptors within the various cell types of an or-
ganism, and this is one of the main determinants of viral tropism. Here, we have performed
a systematic review of the expression of viral receptors in pluripotent cells and compiled a ta-
ble listing the different viruses used in infection studies in both mouse- and human-derived
pluripotent cells (Table 1). For viral receptor expression, human and mouse pluripotent
ESC RNA high-throughput sequencing datasets were analysed using DESeq2 [32,120,121].
Log2 normalised counts were used to classify viral receptor expression as follows: (-) not
expressed for counts lower than 0.3; (+) lowly expressed for counts between 0.3 and 3;
(++) expressed for counts between 3 and 8; (+++) highly expressed for counts over 8; (?) was
used if the expression was unknown, or if the gene had no homolog in that particular species.
For quantifying infectivity, several methods were considered, including flow cytometry, im-
munofluorescence and vRNA/vDNA expression data. Infectivity was classified as follows:
(-) non-infectious; (+) poorly infectious; (++) infectious and (+++) highly susceptible; (ND)
not determined.
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Table 1. List of viruses used in pluripotent human and mouse cells, including ESCs, iPSCs and
teratocarcinoma-derived cells. The table shows the level of infectivity in the pluripotent human
and mouse cells, the (co-) receptors known for each virus and the expression levels (mRNA) of each
receptor in human and mouse ESCs.

Virus
Infectivity in

Pluripotent Cells References
Infectivity

Receptors
Expression in

Pluripotent Cells
References
Receptors/
ExpressionHuman 1 Mouse 1 Human 2 Mouse 2

Adeno-associated virus 2
(AAV2) +++ +++ [122]

Heparan sulfate
proteoglycans +++ +++

[123–125]
AAVR +++ +++

Adenovirus
(Ad5)

+++
+++

+++
ND [122,126]

CAR +++ +++

[127,128]
VCAM-1 + +
Heparan sulfate
proteoglycans +++ +++

Scavenger receptor A +++ +++

Coxsackie B virus
(CVB1&3)

++
++

ND
ND

[129–131] CAR +++ +++ [129,132]DAF +++ +++

Encephalomyocarditis
virus
(EMCV)

ND +++ [29]

Adam9 +++ +++

[133–137]
Sialic acid (not essential
for all strains) + +

VCAM-1 (only relevant
for specific cell types) + +

Herpex simplex virus
(HSV-1)

ND
++

+++
ND [138,139] Nectin-1 +++ +++ [140]

Human Cytomegalo
virus
(hCMV)

-
-
-

-
ND
ND

[141–143]

PDGFRα ++ ++

[144,145]

EGFR ++ ++
Neurophilin2 (Nrp2) +++ +++
CD46 +++ +
BSG (CD147) +++ +++
Thy1 (CD90) +++ ++
Heparan sulfate
proteoglycans (HSPG) +++ +++

αvβ3 Integrin ++ ++
CD13 ++ +++
CD151 +++ +++

Human immunodeficiency
virus
(HIV1/2)

- ND [146,147]
CD4 ++ +

[148,149]CCR5 - +
CXCR4 ++ +

Indiana vesiculovirus
(VSV) +++ ND [32]

LDLR +++ +++

[150]
HSP90B1 (Gp96) +++ +++
TLR4 + +
TLR13 ? +

Influenza A virus
(IAV)

ND
+++
+++

+++
ND
ND

[17,32,151] Sialic Acid α2,3 + + [135,136,152]

La Crosse encephalitis virus
(LACV) ND +++ [13]

C-type lectins ? ?

[153]
DC-SIGN (cd209) + +
Mincle (Clec4E) + +
Dectin-1 (Clec7a) + -
Dectin-2 (Clec6a) + ?

Measles virus
(MV) ++ ND [131,154] MSN +++ +++ [155,156]CD46 +++ ++

Mouse Cytomegalo
virus
(mCMV)

ND
ND

+
+ [141,157] Neurophilin-1 (Nrp1) ++ ++ [158]

Mouse Polyoma virus
(mPyV)

ND
ND

-
- [159,160]

GT1a ? -

[135,136,161,
162]

GD1a ? -
GT1b ? +
Glycosaminoglycans + +
ITGA4 (α4β1 integrin) ++ +
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Table 1. Cont.

Virus
Infectivity in

Pluripotent Cells References
Infectivity

Receptors
Expression in

Pluripotent Cells
References
Receptors/
ExpressionHuman 1 Mouse 1 Human 2 Mouse 2

Murine Norovirus
(MNV1/3) ND - Personal

observation CD300lf - + [163]

Myxomavirus
(MyxV) - ND [164] Unknown

Nodamura virus
(NoV) ++ ND [29] Unknown

Parainfluenza virus type 3
(PIV3) +++ ND [32] Sialic acid α2-6 + + [135,165]Nucleolin +++ +++

Respiratory syncytial virus
(RSV) + ND [32]

Glycosaminoglycans + +
[166]Nucleolin +++ +++

CX3CR1 + +

Rubella virus
(RV)

++
++

ND
ND [131,167] Sphingomyelin (SGMS1) +++ +++ [168]

SARS-CoV-2 ++ ND [169] ACE2 ++ + [170,171]TMPRSS2 ++ ++

Sendai virus
(SeV) ND +++ [13]

GYPA + +

[172,173]
ASGR1 ++ ++
Fucosylated glycans + +
Sialic acid α2-3 + +

Simian vacuolating
virus 40
(SV40)

ND - [159]

Ganglioside GM1 ? -
[135,136,161,
162,174–176]

ITGA4 (α4β1 integrin) ++ +
Sialic acid ++ ++
glycosaminoglycans + +

Sindbis virus
(SINV) ND +++ Personal

observation

NRAMP2 (SLC11A2) +++ +++
[177,178]VLDLR +++ ++

LRP8 (ApoER2) +++ +++

Theiler’s encephalo
myelitis virus
(TMEV(GDVII)

ND +++ [17] Heparan sulfate
(essential co-receptor) +++ +++ [179]

West Nile virus (WNV)
Yellow fever virus
(YFV)
Zika virus
(ZIKV)
Dengue virus (DENV)

-
-

+

-

+
ND

ND

ND

[13,32]

αvβ3 Integrin/ITGAV +++ +++

[180–182]

DC-Sign (CD209) + +
HAVCR1 (TIM-1) - +
TIMD4 (TIM-4) -
AXL ++ +++
TYRO3 +++ +++
Mertk + +

Varicella zoster virus (VZV) - ND [139] αV integrin/ITGAV +++ +++ [140]

1 Infectivity score for human and mouse pluripotent cells was obtained using data generated by several methods,
including flow cytometry, immunofluorescence and vRNA/vDNA expression data. Infectivity is classified as
follows: (-) non-infectious; (+) poorly infectious; (++) infectious; (+++) highly susceptible; (ND) not determined.
2 Expression levels of the known (co-) receptors in human and mouse pluripotent cells were extracted from
RNA-seq data [32,120]. To this end, log2 normalised counts after DESeq2 analysis were used. Receptor level
expression is classified as follows: (-) not expressed (log2 norm counts < 0.3); (+) lowly expressed (log2 norm
counts 0.3–3); (++) expressed (log2 norm counts 3–8); (+++) highly expressed (log2 norm counts >8); (?) if the
expression is unknown, or if the gene has no homologous in that particular species.

Aside from the observation that there are more viruses able than unable to infect
pluripotent cells, this meta-analysis also reveals an additional trend: in cases where the
virus cannot or only poorly infects pluripotent cells, at least one of the main respective (co-)
receptors is either lowly or not expressed. Conversely, in cases where viruses can establish
robust infections in pluripotent cells, their (co-) receptors are all expressed. This latter
observation is summarised in Figure 2, where we plotted the infectivity level for each virus
on the y-axis against the average receptor expression levels on the x-axis. Despite a number
of limitations with this approach, including combining essential and non-essential receptors
and the subjective quantification of infectivity, it strongly suggests a correlation between
infectivity and receptor expression. Our hypothesis has been experimentally confirmed
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in only a few reports where both infectivity and receptor expression were quantified in
the same pluripotent cell line [126,130,143]. Interestingly, there does not seem to be a
relationship between the levels of infectivity and the types of viruses, as dsDNA, ssRNA (+)
and ssRNA (-) viruses all vary between infectious and non-infectious types. Viruses from
the Flaviviridae or Herpesviridae family are known for their wide host range [183,184], but
infectivity for both families in pluripotent cells is absent or very poor. This lack of infectivity
seems to correlate with the absence of some of the major receptors (Figure 2). Based on
these data, it seems reasonable to conclude that, for many viruses, the lack of the essential
factors for binding and entry in pluripotent cells is a major but not only determining factor
for their ability to establish successful infections. It, therefore, seems premature to conclude
that pluripotent cells have a general resistance to most viruses solely based on the limited
number of non-infectious viruses and the presence of alternative antiviral mechanisms.
However, it is also inaccurate to conclude that alternative antiviral mechanisms do not
provide a certain level of intrinsic antiviral immunity. Infections of mammalian cells,
either somatic or pluripotent, with Nodamura virus (NoV), Encephalomyocarditis virus
(EMCV) and Influenza A virus (IAV) revealed the presence of viral suppressors of RNAi,
suggesting that viruses have also evolved ways to block antiviral RNAi to ensure a robust
infection [28,29,35,41]. Knockout of the highly expressed ISGs IFITM1-3 in ESCs results in a
considerable increase in viral susceptibility [32]. Interestingly, the IFITM proteins’ antiviral
mode of action involves the inhibition of viral entry [68].
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Taken together, viral susceptibility in early development is determined by a wide
range of cellular characteristics, starting with the expression of (co-) receptors, an absence
of the IFN response and the activity of alternative antiviral mechanisms.
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