238 research outputs found

    Persistence of Asthmatic Response after Ammonium Persulfate-Induced Occupational Asthma in Mice

    Get PDF
    Since persulfate salts are an important cause of occupational asthma (OA), we aimed to study the persistence of respiratory symptoms after a single exposure to ammonium persulfate (AP) in AP-sensitized mice. BALB/c mice received dermal applications of AP or dimethylsulfoxide (DMSO) on days 1 and 8. On day 15, they received a single nasal instillation of AP or saline. Airway hyperresponsiveness (AHR) was assessed using methacholine provocation, while pulmonary inflammation was evaluated in bronchoalveolar lavage (BAL), and total serum immunoglobulin E (IgE), IgG1 and IgG2a were measured in blood at 1, 4, 8, 24 hours and 4, 8, 15 days after the single exposure to the causal agent. Histological studies of lungs were assessed. AP-treated mice showed a sustained increase in AHR, lasting up to 4 days after the challenge. There was a significant increase in the percentage of neutrophils 8 hours after the challenge, which persisted for 24 hours in AP-treated mice. The extent of airway inflammation was also seen in the histological analysis of the lungs from challenged mice. Slight increases in total serum IgE 4 days after the challenge were found, while IgG gradually increased further 4 to 15 days after the AP challenge in AP-sensitized mice. In AP-sensitized mice, an Ig-independent response is induced after AP challenge. AHR appears immediately, but airway neutrophil inflammation appears later. This response decreases in time; at early stages only respiratory and inflammatory responses decrease, but later on immunological response decreases as well

    Household air pollution and risk of pulmonary tuberculosis in HIV-Infected adults

    Get PDF
    Background: In low- and middle-income countries countries, millions of deaths occur annually from household air pollution (HAP), pulmonary tuberculosis (PTB), and HIV-infection. However, it is unknown whether HAP influences PTB risk among people living with HIV-infection. Methods: We conducted a case-control study among 1,277 HIV-infected adults in Bukavu, eastern Democratic Republic of Congo (February 2018 – March 2019). Cases had current or recent (<5y) PTB (positive sputum smear or Xpert MTB/RIF), controls had no PTB. Daily and lifetime HAP exposure were assessed by questionnaire and, in a random sub-sample (n=270), by 24-hour measurements of personal carbon monoxide (CO) at home. We used multivariable logistic regression to examine the associations between HAP and PTB. Results: We recruited 435 cases and 842 controls (median age 41 years, [IQR] 33-50; 76% female). Cases were more likely to be female than male (63% vs 37%). Participants reporting cooking for >3h/day and ≥2 times/day and ≥5 days/week were more likely to have PTB (aOR 1·36; 95%CI 1·06-1·75) than those spending less time in the kitchen. Time-weighted average 24h personal CO exposure was related dose-dependently with the likelihood of having PTB, with aOR 4·64 (95%CI 1·1-20·7) for the highest quintile [12·3-76·2 ppm] compared to the lowest quintile [0·1-1·9 ppm]. Conclusion: Time spent cooking and personal CO exposure were independently associated with increased risk of PTB among people living with HIV. Considering the high burden of TB-HIV coinfection in the region, effective interventions are required to decrease HAP exposure caused by cooking with biomass among people living with HIV, especially women

    Chemisch-geïnduceerd astma: wat kunnen we leren van proefdiermodellen

    No full text
    status: publishe

    Strain-dependent acute lung injury after intra-tracheal administration of a 'refined' aniline-denatured rapeseed oil: a murine model of the toxic oil syndrome?

    No full text
    Most attempts to reproduce the toxic oil syndrome in animals, either with case-related oils or with refined rapeseed oils, have been unsuccessful. An aniline-denatured rapeseed oil that was subsequently refined according to a protocol yielding relevant markers of "toxic oil" (oil RSO160401) had led to possibly relevant lesions following oral administration in mice. Therefore, in the present study, RSO160401 was subjected to a more extended in vivo testing. To try and maximize the response, BALB/c, DBA/2, A/J, and C57BL/6 mice were administered RSO160401 oil by a single intra-tracheal instillation (1ml/kg), with sacrifice 2 or 7 days post-exposure. Intra-tracheal administration led to a strain-dependent acute response: acute pulmonary damage in DBA/2 and A/J mice, and increases in blood eosinophilia in DBA/2 mice (6.5% vs 3.1% in controls). The pulmonary lesions regressed with time after exposure, being more complete in A/J than in DBA/2 mice. The observation of strain-dependent effects suggests that genetic susceptibility is an important factor in disease induction by the RSO160401 oil.status: publishe

    Biomarker discovery in asthma and COPD: Application of proteomics techniques in human and mice – mini review

    Get PDF
    The use of advanced proteomics approaches in the search for biomarkers in chronic lung diseases, such as asthma and COPD, is rather limited. Asthma and COPD are complex disorders, which can be subdivided into several phenotypes. This results in a heterogeneity of differential expressed biological molecules. Furthermore, genetic differences between animals and humans make ‘translation’ of possible biomarkers challenging. Yet, the improved sensitivity and high throughput of proteomic techniques could be an important asset for(new) protein biomarker discovery in either human or animal models. We have reviewed the literature that reported the use of different proteomics approaches performed on samples obtained from humans and murine models in asthma and COPD research for the discovery of new biomarkers of diseases, biomarkers of sensitization or for the refinement of treatment. There is an increasing trend in the use of proteomics to explore new biomarkers of asthma or COPD. Although several murine models have been developed to study these lung diseases, and proteomics studies have been performed, ‘translation’ of identified candidate biomarkers into clinical studies is often lacking.status: publishe

    Nano-TiO2 modulates the dermal sensitization potency of dinitrochlorobenzene after topical exposure

    No full text
    Little is known about the impact of engineered nanoparticles (ENPs) on the skin sensitization caused by chemicals.status: publishe

    Assessment of Experimental Techniques That Facilitate Human Granuloma Formation in an In Vitro System: A Systematic Review

    No full text
    The process of granuloma formation is complex, and due to species differences, the validity of animal studies is somewhat questioned. Moreover, the large number of animals needed to observe the different stages of development also raises ethical questions. Therefore, researchers have explored the use of human peripheral blood mononuclear cells (PBMCs), a heterogeneous population of immune cells, in an in vitro model. This review included in vitro studies that focused on exposing PBMCs&mdash;from healthy, sensitized, or diseased individuals&mdash;to antigens derived from infectious agents&mdash;such as mycobacteria or Schistosoma spp.&mdash;or inorganic antigens&mdash;such as beryllium. The reviewed studies mainly explored how human in vitro granuloma models can contribute towards understanding the pathogenesis of granulomatous diseases, especially during the early stages of granuloma formation. The feasibility of granuloma modelling was thus largely assessed via experimental techniques including (1) granuloma scoring indices (GI), (2) cell surface markers and (3) cytokine secretion profiling. While granuloma scoring showed some similarities between studies, a large variability of culture conditions and endpoints measured have been identified. The lack of any standardization currently impedes the success of a human in vitro granuloma model
    corecore