59 research outputs found

    Dietary Mg2+ Intake and the Na+/Mg2+ Exchanger SLC41A1 Influence Components of Mitochondrial Energetics in Murine Cardiomyocytes

    Get PDF
    Cardiomyocytes are among the most energy-intensive cell types. Interplay between the components of cellular magnesium (Mg) homeostasis and energy metabolism in cardiomyocytes is poorly understood. We have investigated the effects of dietary Mg content and presence/functionality of the Na+/Mg2+ exchanger SLC41A1 on enzymatic functions of selected constituents of the Krebs cycle and complexes of the electron transport chain (ETC). The activities of aconitate hydratase (ACON), isocitrate dehydrogenase (ICDH), α-ketoglutarate dehydrogenase (KGDH), and ETC complexes CI–CV have been determined in vitro in mitochondria isolated from hearts of wild-type (WT) and Slc41a1−/− mice fed a diet with either normal or low Mg content. Our data demonstrate that both, the type of Mg diet and the Slc41a1 genotype largely impact on the activities of enzymes of the Krebs cycle and ETC. Moreover, a compensatory effect of Slc41a1−/− genotype on the effect of low Mg diet on activities of the tested Krebs cycle enzymes has been identified. A machine-learning analysis identified activities of ICDH, CI, CIV, and CV as common predictors of the type of Mg diet and of CII as suitable predictor of Slc41a1 genotype. Thus, our data delineate the effect of dietary Mg content and of SLC41A1 functionality on the energy-production in cardiac mitochondria

    Gitelman-Like Syndrome Caused by Pathogenic Variants in mtDNA

    Get PDF
    Background: Gitelman syndrome is the most frequent hereditary salt-losing tubulopathy characterized by hypokalemic alkalosis and hypomagnesemia. Gitelman syndrome is caused by biallelic pathogenic variants in SLC12A3, encoding the Na+-Cl− cotransporter (NCC) expressed in the distal convoluted tubule. Pathogenic variants of CLCNKB, HNF1B, FXYD2, or KCNJ10 may result in the same renal phenotype of Gitelman syndrome, as they can lead to reduced NCC activity. For approximately 10 percent of patients with a Gitelman syndrome phenotype, the genotype is unknown. Methods: We identified mitochondrial DNA (mtDNA) variants in three families with Gitelman-like electrolyte abnormalities, then investigated 156 families for variants in MT-TI and MT-TF, which encode the transfer RNAs for phenylalanine and isoleucine. Mitochondrial respiratory chain function was assessed in patient fibroblasts. Mitochondrial dysfunction was induced in NCC-expressing HEK293 cells to assess the effect on thiazide-sensitive 22Na+ transport. Results: Genetic investigations revealed four mtDNA variants in 13 families: m.591C>T (n=7), m.616T>C (n=1), m.643A>G (n=1) (all in MT-TF), and m.4291T>C (n=4, in MT-TI). Variants were near homoplasmic in affected individuals. All variants were classified as pathogenic, except for m.643A>G, which was classified as a variant of uncertain significance. Importantly, affected members of six families with an MT-TF variant additionally suffered from progressive chronic kidney disease. Dysfunction of oxidative phosphorylation complex IV and reduced maximal mitochondrial respiratory capacity were found in patient fibroblasts. In vitro pharmacological inhibition of complex IV, mimicking the effect of the mtDNA variants, inhibited NCC phosphorylation and NCC-mediated sodium uptake. Conclusion: Pathogenic mtDNA variants in MT-TF and MT-TI can cause a Gitelman-like syndrome. Genetic investigation of mtDNA should be considered in patients with unexplained Gitelman syndrome-like tubulopathies

    Low extracellular magnesium does not impair glucose-stimulated insulin secretion.

    No full text
    There is an increasing amount of clinical evidence that hypomagnesemia (serum Mg2+ levels < 0.7 mmol/l) contributes to type 2 diabetes mellitus pathogenesis. Amongst other hypotheses, it has been suggested that Mg2+ deficiency affects insulin secretion. The aim of this study was, therefore, to investigate the acute effects of extracellular Mg2+ on glucose-stimulated insulin secretion in primary mouse islets of Langerhans and the rat insulinoma INS-1 cell line. Here we show that acute lowering of extracellular Mg2+ concentrations from 1.0 mM to 0.5 mM did not affect glucose-stimulated insulin secretion in islets or in insulin-secreting INS-1 cells. The expression of key genes in the insulin secretory pathway (e.g. Gck, Abcc8) was also unchanged in both experimental models. Knockdown of the most abundant Mg2+ channel Trpm7 by siRNAs in INS-1 cells resulted in a 3-fold increase in insulin secretion at stimulatory glucose conditions compared to mock-transfected cells. Our data suggest that insulin secretion is not affected by acute lowering of extracellular Mg2+ concentrations

    Magnesium to prevent kidney disease-associated vascular calcification: crystal clear?

    No full text
    Vascular calcification is a prognostic marker for cardiovascular mortality in chronic kidney disease (CKD) patients. In these patients, magnesium balance is disturbed, mainly due to limited ultrafiltration of this mineral, changes in dietary intake and the use of diuretics. Observational studies in dialysis patients report that a higher blood magnesium concentration is associated with reduced risk to develop vascular calcification. Magnesium prevents osteogenic vascular smooth muscle cell transdifferentiation in in vitro and in vivo models. In addition, recent studies show that magnesium prevents calciprotein particle maturation, which may be the mechanism underlying the anti-calcification properties of magnesium. Magnesium is an essential protective factor in the calcification milieu, which helps to restore the mineral-buffering system that is overwhelmed by phosphate in CKD patients. The recognition that magnesium is a modifier of calciprotein particle maturation and mineralization of the extracellular matrix renders it a promising novel clinical tool to treat vascular calcification in CKD. Consequently, the optimal serum magnesium concentration for patients with CKD may be higher than in the general population

    Metformin regulates TRPM6, a potential explanation for magnesium imbalance in type 2 diabetes patients

    No full text
    Metformin therapy is associated with lower serum magnesium (Mg2+) levels in type 2 diabetes patients. The TRPM6 channel determines the fine-tuning of Mg2+ (re)absorption in intestine and kidney. Therefore, we aimed to investigate the short- and long-term effects of metformin on TRPM6. Patch clamp recordings and biotinylation assays were performed upon 1 h of incubation with metformin in TRPM6-transfected HEK293 cells. Additionally, 24 h of treatment of mDCT15 kidney and hCaco-2 colon cells with metformin was applied to measure the effects on endogenous TRPM6 expression by quantitative real-time PCR. To assess Mg2+ absorption, 25Mg2+ uptake measurements were performed using inductively coupled plasma mass spectrometry. Short-term effects of metformin significantly increased TRPM6 activity and its cell surface trafficking. In contrast, long-term effects significantly decreased TRPM6 mRNA expression and 25Mg2+ uptake. Metformin lowered TRPM6 mRNA levels independently of insulin- and AMPK-mediated pathways. Moreover, in type 2 diabetes patients, metformin therapy was associated with lower plasma Mg2+ concentrations and fractional excretion of Mg2+. Thereby, short-term metformin treatment increases TRPM6 activity explained by enhanced cell surface expression. Conversely, long-term metformin treatment results in downregulation of TRPM6 gene expression in intestine and kidney cells. This long-term effect translated in an inverse correlation between metformin and plasma Mg2+ concentration in type 2 diabetes patients.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Calciprotein particle inhibition explains magnesiummediated protection against vascular calcification

    Get PDF
    Background: Phosphate (Pi) toxicity is a strong determinant of vascular calcification development in chronic kidney disease (CKD). Magnesium (Mg2+) may improve cardiovascular risk via vascular calcification. The mechanism by which Mg2+ counteracts vascular calcification remains incompletely described. Here we investigated the effects of Mg2+ on Pi and secondary crystalline calciprotein particles (CPP2)-induced calcification and crystal maturation. Methods: Vascular smooth muscle cells (VSMCs) were treated with high Pi or CPP2 and supplemented with Mg2+ to study cellular calcification. The effect of Mg2+ on CPP maturation, morphology and composition was studied by medium absorbance, electron microscopy and energy dispersive spectroscopy. To translate our findings to CKD patients, the effects of Mg2+ on calcification propensity (T50) were measured in sera from CKD patients and healthy controls. Results: Mg2+ supplementation prevented Pi-induced calcification in VSMCs. Mg2+ dose-dependently delayed the maturation of primary CPP1 to CPP2 in vitro. Mg2+ did not prevent calcification and associated gene and protein expression when added to already formed CPP2. Confirmatory experiments in human serum demonstrated that the addition of 0.2 mmol/L Mg2+ increased T50 from healthy controls by 51 ± 15 min (P < 0.05) and CKD patients by 44 ± 13 min (P < 0.05). Each further 0.2 mmol/L addition of Mg2+ led to further increases in both groups. Conclusions: Our results demonstrate that crystalline CPP2 mediates Pi-induced calcification in VSMCs. In vitro, Mg2+ delays crystalline CPP2 formation and thereby prevents Pi-induced calcification
    • …
    corecore