2 research outputs found

    Attenuation of Doxorubicin-Induced Small Intestinal Mucositis by Pectins is Dependent on Pectin's Methyl-Ester Number and Distribution

    Get PDF
    Scope Intestinal mucositis is a common side effect of the chemotherapeutic agent doxorubicin, which is characterized by severe Toll-like receptor (TLR) 2-mediated inflammation. The dietary fiber pectin is shown to prevent this intestinal inflammation through direct inhibition of TLR2 in a microbiota-independent manner. Recent in vitro studies show that inhibition of TLR2 is determined by the number and distribution of methyl-esters of pectins. Therefore, it is hypothesized that the degree of methyl-esterification (DM) and the degree of blockiness (DB) of pectins determine attenuating efficacy on doxorubicin-induced intestinal mucositis. Methods and Results Four structurally different pectins that differed in DM and DB are tested on inhibitory effects on murine TLR2 in vitro, and on doxorubicin-induced intestinal mucositis in mice. These data demonstrate that low DM pectins or intermediate DM pectins with high DB have the strongest inhibitory impact on murine TLR2-1 and the strongest attenuating effect on TLR2-induced apoptosis and peritonitis. Intermediate DM pectin with a low DB is, however, also effective in preventing the induction of doxorubicin-induced intestinal damage. Conclusion These pectin structures with stronger TLR2-inhibiting properties may prevent the development of doxorubicin-induced intestinal damage in patients undergoing chemotherapeutic treatment with doxorubicin

    Pectin Interaction with Immune Receptors is Modulated by Ripening Process in Papayas

    Get PDF
    Dietary fibers have been shown to exert immune effects via interaction with pattern recognition receptors (PRR) such as toll-like receptors (TLR) and nucleotide-binding oligomerization domain (NOD)-like receptors. Pectin is a dietary fiber that interacts with PRR depending on its chemical structure. Papaya pectin retains different chemical structures at different ripening stages. How this influence PRR signaling is unknown. The aim of this work was to determine how ripening influences pectin structures and their ability to interact with TLR2, 3, 4, 5 and 9, and NOD1 and 2. It was evaluated the interaction of the water-soluble fractions rich in pectin extracted from unripe to ripe papayas. The pectin extracted from ripe papayas activated all the TLR and, to a lesser extent, the NOD receptors. The pectin extracted from unripe papayas also activated TLR2, 4 and 5 but inhibited the activation of TLR3 and 9. The differences in pectin structures are the higher methyl esterification and smaller galacturonan chains of pectin from ripe papayas. Our finding might lead to selection of ripening stages for tailored modulation of PRR to support or attenuate immunity.This research was financially supported by grants #2012/23970–2, #2013/07914–8 and #2019/11816–8, São Paulo Research Foundation (FAPESP). Research supported by LNNano – Brazilian Nanotechnology National Laboratory, CNPEM/MCTI (Proposal AFM#21087). Scholarship was awarded to SBRP by the National Council for Scientific and Technological Development (CNPq; 167934/2014–7).</p
    corecore