157 research outputs found

    Grazing-incidence Small-angle X-ray Scattering Technique for Probing Nanostructures and Processes at Nanoscale

    Get PDF
    The paper presents the grazing-incidence small-angle X-ray scattering technique and its application to the studies of self-assembly and re-assembly effects of colloidal nanoparticles. Two basic cases are exemplified - solvent evaporation driven self-assembly and self-assembly driven by barrier movement in the Langmuir-Blodgett trough. Studies of the nanoparticle re-assembly effects due to the surfactant removal complete the overview. These examples document strength of GISAXS for an in situ tracking of processes at nanoscale. The results have direct implications for tailored preparation of the self -assembled nanoparticle templates for sensing, plasmonics and other applications

    Intrinsic anomalous surface roughening of TiN films deposited by reactive sputtering

    Get PDF
    7 pages, 7 figures.-- PACS nrs.: 68.55.−a, 81.15.Cd, 81.15.Aa, 68.35.Ct.Final publisher version available Open Access at: http://gisc.uc3m.es/~cuerno/publ_list.htmlWe study surface kinetic roughening of TiN films grown on Si(100) substrates by dc reactive sputtering. The surface morphology of films deposited for different growth times under the same experimental conditions were analyzed by atomic force microscopy. The TiN films exhibit intrinsic anomalous scaling and multiscaling. The film kinetic roughening is characterized by a set of local exponent values α(loc)=1.0 and β(loc)=0.39, and global exponent values α=1.7 and β=0.67, with a coarsening exponent of 1/z=0.39. These properties are correlated to the local height-difference distribution function obeying power-law statistics. We associate this intrinsic anomalous scaling with the instability due to nonlocal shadowing effects that take place during thin-film growth by sputtering.Financial support is acknowledged from Spanish MCyT Grants No. MAT 2002-04037-C03-03 and No. BFM 2003-07749-C05-01, -02, and -05; Comunidad Autónoma de Madrid, Grant No. GR/MAT/0431/2004, European Community Grant No. G5RD-CT-2000-00333, Centre of Excellence CE PI SAS, Contract No. I/2/2005, and Slovak Grant Agency for Science VEGA, Grant No. 2/6030/26.Publicad

    Growth dynamics of reactive-sputtering-deposited AlN films

    Get PDF
    8 pages, 7 figures.-- PACS nrs.: 81.05.Ea, 68.47.Fg, 81.15.Cd, 68.55.Ac, 68.55.Jk, 68.35.Bs.-- Issue title: "Structural, mechanical, thermodynamical and optical properties of condensed matter".We have studied the surface kinetic roughening of AlN films grown on Si(100) substrates by dc reactive sputtering within the framework of the dynamic scaling theory. Films deposited under the same experimental conditions for different growth times were analyzed by atomic force microscopy and x-ray diffraction. The AlN films display a (002) preferred orientation. We have found two growth regimes with a crossover time of 36 min. In the first regime, the growth dynamics is unstable and the films present two types of textured domains, well textured and randomly oriented, respectively. In contrast, in the second regime the films are homogeneous and well textured, leading to a relative stabilization of the surface roughness characterized by a growth exponent β=0.37±0.03. In this regime a superrough scaling behavior is found with the following exponents: (i) Global exponents: roughness exponent α=1.2±0.2 and β=0.37±0.03 and coarsening exponent 1/z=0.32±0.05; (ii) local exponents: α(loc)=1, β(loc)=0.32±0.01. The differences between the growth modes are found to be related to the different main growth mechanisms dominating their growth dynamics: sticking anisotropy and shadowing, respectively.Financial support from Spanish MCyT: Projects No. MAT 2002-04037-C03-03 and BFM 2003-07749-C05-01, BFM 2003-07749-C05-02, and BFM 2003-07749-C05-05, European Community: Project No. G5RD-CT-2000-00333, Slovak governmental Project No. 2003-SO 51/03R0600/01, and Slovak Grant Agency for Science VEGA, Project No. 2/3149/23, are acknowledged.Publicad

    Electrical and structural properties of MgB2 films prepared by sequential deposition of B and Mg on the NbN buffered Si(100) substrate

    Full text link
    We introduce a simple method of an MgB2 film preparation using sequential electron-beam evaporation of B-Mg two-layer (followed by in-situ annealing) on the NbN buffered Si(100) substrate. The Transmission Electron Microscopy analyses confirm a growth of homogeneous nanogranular MgB2 films without the presence of crystalline MgO. A sensitive measurement of temperature dependence of microwave losses shows a presence of intergranular weak links close the superconducting transition only. The MgB2 films obtained, about 200 nm thick, exhibit a maximum zero resistance critical temperature of 36 K and critical current density of 3x10^7 A/cm^2 at 13.2 KComment: 11 pages, 6 figures, submitted to Appl. Phys. Let

    Grazing-incidence Small-angle X-ray Scattering Technique for Probing Nanostructures and Processes at Nanoscale

    Get PDF
    The paper presents the grazing-incidence small-angle X-ray scattering technique and its application to the studies of self-assembly and re-assembly effects of colloidal nanoparticles. Two basic cases are exemplified - solvent evaporation driven self-assembly and self-assembly driven by barrier movement in the Langmuir-Blodgett trough. Studies of the nanoparticle re-assembly effects due to the surfactant removal complete the overview. These examples document strength of GISAXS for an in situ tracking of processes at nanoscale. The results have direct implications for tailored preparation of the self -assembled nanoparticle templates for sensing, plasmonics and other applications

    X-ray reflectivity and non-specular scattering investigation of amorphous W/Si multilayers after rapid thermal annealing

    No full text
    The specular reflectivity and non-specular scattering measurements at grazing incidence were used to characterize the evolution of the amorphous W/Si multilayer structure with the nominal period of 7 nm after the rapid thermal annealing. No mixing or interdiffusion worsening the perfection of the interfaces takes place up to the 773K/5s annealing. The complex interface phenomena start after the 773K/20s annealing connected with the displacement and coarsening of the interfaces. After the 1023K/5s annealing the ML structure collapsed
    corecore