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The paper presents the grazing-incidence small-angle X-ray scattering technique and its application to 

the studies of self-assembly and re-assembly effects of colloidal nanoparticles. Two basic cases are exempli-

fied - solvent evaporation driven self-assembly and self-assembly driven by barrier movement in the 

Langmuir-Blodgett trough. Studies of the nanoparticle re-assembly effects due to the surfactant removal 

complete the overview. These examples document strength of GISAXS for an in situ tracking of processes 

at nanoscale. The results have direct implications for tailored preparation of the self -assembled nanoparti-

cle templates for sensing, plasmonics and other applications. 
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1. GRAZING-INCIDENCE SMALL-ANGLE X-RAY 

SCATTERING 
 

The grazing-incidence small-angle X-ray scattering 
(GISAXS) is a unique technique for non-destructive 

characterization of nanostructures and in situ probing 

of processes at nanoscale [1-3]. The basic scheme of 

GISAXS experiment is shown in Fig. 1. 

 

Fig. 1 – Scheme of a GISAXS experiment 
 

The GISAXS is a reflection-mode counterpart of the 

small-angle X-ray scattering (SAXS) measured in the 

transmission mode. The monochromatic X-ray beam 
(usually CuK line, 8027 eV) impinges on a planar 

sample surface under a small angle of incidence above 

the critical value for the total external reflection, being 
scattered by any inhomogeneities of electron density on 

the surface or below in a depth controlled by the angle 

of incidence. These can be e.g. nanoparticles on the 

substrate or clusters below the surface. The scattered 

intensity is projected onto a 2-dimensional (2D) detec-
tor placed normal to the plane of incidence (GISAXS 

pattern). Within the first Born (kinematical) approxi-

mation of the wave equation describing the scattering 

process, which is valid for the incidence angles 3 times 

larger than the critical value, the GISAXS pattern is 

directly proportional to the Fourier transform of the 

electron density autocorrelation function  in real space. 

In the case of periodic arrangement of scattering enti-

ties, the GISAXS pattern is a product of the interfer-

ence function describing the periodicity and controlling 

positions of the GISAXS peaks, and the form factor of 
the entities, e.g. nanoparticles, that controls intensity 

of the GISAXS peaks. Hence, the GISAXS pattern pro-

vides indirect information on the nanoparticle shape 

and order that can be retrieved by GISAXS simulation 

within an appropriate model. On the other hand, some 
parameters such as the interparticle distance or size of 

the coherently scattering domains can be obtained di-

rectly. The maximum resolution of laboratory GISAXS 

devices expressed in real space reaches 100 nm, how-

ever, resolution up to 1 m or more may be achieved 

with highly collimated synchrotron beams. The Fig. 2 

shows a SAXS/GISAXS Nanostar device (Bruker AXS) 

with high-intense Ga liquid-metal jet anode source (Ex-
cillum) installed at the Institute of Physics SAS. 

 

 

Fig. 2 – Nanostar device with Excillum source 
 

Comparing with direct space imaging local methods 

such as electron microscopy or scanning probe tech-

niques, the information provided by GISAXS is inher-

ently statistical, being averaged over the whole irradi-

ated volume. Other GISAXS advantages are non-

destructive character of the sample probing and no 
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need for vacuum. Therefore GISAXS is suitable for in 

situ tracking the processes at nanoscale including the 

air/water interfaces where other techniques fail due to 

the high vapour pressure and surface tension of water. 

Hence, GISAXS is a method of choice e.g. for studies of 
self-assembly effects of colloidal nanoparticles as it will 

be demonstrated in the following.  
 

2. SELF-ASSEMBLED NANOPARTICLE  
ARRAYS 
 

Highly monodisperse nanoparticles exhibit sponta-
neous self-assembly into large arrays which provides 

an effective way  to prepare regular macroscopic nano-

particle monolayers and multilayers by Langmuir-

Blodgett and Langmuir−Schaefer techniques or 3D 

nanoparticle arrays by solution drop casting followed 
by solvent evaporation [4]. Colloidal metallic nanopar-

ticle self-assemblies are applied in electrical strain 

gauges with tunneling regime of electrical conductivity 

that outperforms conventional metal film-based strain 

gauges. Semiconducting metal oxide nanoparticle films 
represent an ideal platform for gas sensing due to a 

significantly enhanced surface/volume ratio with appli-

cations in civil security and health care. Self-

assemblies of plasmonic nanoparticles are attractive as 

templates for the surface-enhanced Raman scattering 
studies. Self-assembled templates of polystyrene nano-

particles are used in lift-off lithography. 

In order to tailor properties of the nanoparticle ar-

rays for envisaged applications, knowledge of the de-

tails of the self-assembly process is essential and must 
be studied. Here, GISAXS proves to be an excellent 

method for tracking the nanoparticle ordering at na-

noscale during the self-assembly process. Alternatively, 

it may be combined with measurements of macroscopic 

physical quantities such as the surface pressure, re-

fractive index or surface potential to get a complex pic-
ture of the process. In the examples to follow, the sol-

vent evaporation driven self-assembly after the nano-

particle colloidal solution drop casting on a substrate 

and a modified Langmuir−Schaefer deposition [5] were 

employed. In the latter case, a drop of colloidal nano-
particle solution was applied and spread on the water 

surface in a Langmuir-Blodgett trough. A controlled 

barrier movement reduced gradually the surface area 

which resulted in the formation of a closed self-

assembled nanoparticle monolayer at the air/water 
interface, actually the nanoparticle Langmuir film in 

analogy to traditional molecular Langmuir film. The 

film was transferred onto the substrate by a controlled 

removal of the water subphase. 
 

3. GISAXS STUDIES OF NANOPARTICLE SELF-

ASSEMBLY AND RE-ASSEMBLY 
 

3.1 Example 1 - Solvent Evaporation Driven 
Self-assembly 

 

The colloidal iron oxide nanoparticles of 6.40.6 nm 

diameter dispersed in toluene were used. The surfac-

tant shell of oleic acid and oleylamine prevented from 

the nanoparticle aggregation. The GISAXS experiments 

were conducted at BW4 beamline, HASYLAB/DESY 

Hamburg. A 5 L drop of colloidal nanoparticles was 

applied onto a clean silicon substrate at room tempera-

ture. Two alignments of the probing X-ray beam with 

respect to the substrate surface were employed. In the 

case of a nearly parallel alignment (0.1 degree devia-

tion) and the substrate slightly shifted down, GISAXS 
was able to distinguish between the nanoparticle self-

assembly in the colloidal drop volume (Fig. 3 top) and at 

the drop surface (Fig. 3 center). In the latter case, a 

narrow streak in the GISAXS pattern slightly inclined 

with respect to the qz axis (normal to the substrate 
component of the scattering vector) is visible in the 

moment when the X-ray beam intersects receding sur-

face of the drying drop. On the solvent evaporation 

(Fig. 3 bottom), all nanoparticles are on the substrate 

outside the X-ray beam and no scattering is observed. 
 

Fig. 3 - Scheme of the drying colloidal drop (left) and the corre-

sponding GISAXS patterns taken in situ (right) in the nearly 

parallel mode 

 

Fig. 4 – Scheme of the drying colloidal drop (left) and the cor-

responding GISAXS patterns taken in situ (right) in the in-

clined mode 
 

In the case of the inclined  alignment of the X-ray 
beam (0.18 degree incidence angle), GISAXS absorbed 

at first strongly by the volume of the colloidal drop 
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(Fig. 4 top) gradually emerges as the solvent evaporates 

(Fig. 4 center) and finally distinct side maxima in the 

GISAXS pattern (Fig. 4 bottom) prove the nanoparticle 

self-assembly into a regular array after the complete 

solvent evaporation. This is a clear difference in com-
parison with Fig. 3 top which could be simulated with 

the form-factor function of a single spherical nanoparti-

cle and a constant interference function. Hence, no posi-

tive evidence of the nanoparticle self-assembly inside 

the colloidal drop (liquid phase) was found. 
 

 

Fig. 5 – Scheme of the vertical oscillations of the sample stage 

and temporal evolution of the selected lateral and normal cuts 

of the GISAXS patterns taken in situ during oscillations 
 

In order to locate the self-assembly region, vertical 

and horizontal oscillations of the sample stage were 

added and separately applied during the drop drying. 

The scanning velocity was adapted to the exposure and 

read-out times of the 2D detector in order to minimize 
the effect of the spatial smearing. In this way, it was 

possible to collect a large number of GISAXS patterns 

from different evaporation stages of the drying colloidal 

drop. An example for vertical oscillations is shown in 

Fig. 5 along with temporal evolution of the lateral (in-
plane) qy cuts and normal qz cuts of the GISAXS pattern 

at the critical angle and at qy = 0, respectively. During 

one oscillation cycle, one can distinguish between three 

types of the X-ray scattering from the drying drop that 

correspond to the zones in real space labelled as Z0, Z1 

and Z2. The experimentally relevant zones Z1 and Z2 

can be attributed to the scattering from the drying drop 

surface and volume, respectively. Similarly to 
Fig. 3 center, a strong scattering streak occurs due to 

the X-ray scattering from the drop surface when the 

beam passes from zone Z0 to Z1. No nanoparticle self-

assembly such as that manifested by the side maxima 

in Fig. 4 bottom can be identified when the X-ray beam 
enters zone 2, in accord with Fig. 3 top. 

A similar analysis was performed with horizontal 

oscillations of the sample stage. Relating the infor-

mation on the temporal evolution of the GISAXS signal 

to its spatial distribution at respective times, the three-
phase interface represented by the shrinking contour 

line of the drying drop was finally identified as the re-

gion of the nanoparticle self-assembly. 
 

3.2 Example 2 - Self-assembly at Water/Air In-

terface 
 

While the solvent-evaporation driven self-assembly 

provides rather small nanoparticle arrays limited by the 

size of the drying drop, large and homogenous arrays of 

self-assembled nanoparticles can be prepared as Lang-
muir films at the air/water interface. A chlorophorm 

solution of colloidal Ag nanoparticles of 7.00.7 nm di-

ameter (concentration of 0.2 mg/mL) was applied by a 
microsyringe on the water surface between barriers in a 

Langmuir-Blodgett trough. After spreading the nano-

particles at the air/water interface, the solvent was let 

to evaporate for 15 minutes before the measurement. 

The in situ GISAXS measurements were performed at 
ID10B beamline at ERSF, Grenoble. In particular, a 

continuous series of the GISAXS patterns was recorded 

as a movie during the nanoparticle Langmuir film com-

pression and expansion at a constant barrier speed of 

26 cm2/min. The time between the two successive pat-
terns of 1.87 s was short enough not to miss any relaxa-

tion effect. The surface pressure controlled by the barri-

er movement was measured simultaneously by the Wil-

helmy plate. Hence, immediate response of the nano-

particle self-assembly driven by the barrier movement 
to the changing surface pressure could be measured and 

intermediate phases far from equilibrium detected. 
 

 

Fig. 6 – GISAXS patterns before(left) and after (right) the 

compression 
 

The Fig. 6 shows the GISAXS patterns of the nano-
particle Langmuir film before and after the compres-

sion. The qz and qy are the normal and lateral (along the 

air/water interface) scattering vector components. The 

distinct side maxima running along qz, called also Bragg 

rods, suggest presence of an ordered nanoparticle mono-
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layer from the very beginning while the null ellipsometry 

image measured separately (Fig. 7 right) shows that this 

monolayer is discontinuous at small surface pressure. 

Considering the monolayer islands as hexagonally or-

dered close-packed 2D crystals of spherical nanoparticles, 
the lattice spacing before compression reads d10 = 2/qy,1B 

which for the first Bragg rod maximum position 

qy,1B = 0.75 nm-1 gives the nearest-neighbour interparticle 
distance  = 2d10/3 = 9.7 nm. The compression results in 

an intensity redistribution along qy of the central (at 

qz = 0) and the first Bragg rods (Fig. 6). On the former, 
the maximum intensity shifts from the critical exit angle 

(so called Yoneda peak) to peak P1 (hidden by the specu-

lar beam stop to prevent detector damage) after compres-

sion which indicates the nanoparticle layering. On the 

latter, peak P2 evolves at the position that suggests for-
mation of a vertically correlated second layer, namely the 

hexagonal close-packed bilayer [6]. 
 

 

Fig. 7 – Null ellipsometry images of the nanoparticle Lang-

muir film before compression (right) and after expansion (left) 
 

Based on the simultaneously measured pressure–

area isotherm and GISAXS patterns, four principal 

stages of the nanoparticle Langmuir film compression 
can be identified (Fig. 8). In stage I, no measureable 

change in the surface pressure  is detected (Fig. 8a). 

The self-assembly of nanoparticles evidenced by the 
presence of Bragg rods in GISAXS (Fig. 6) and occuring 

within isolated self-assembled nanoparticle islands 

(Fig. 7 right) is observed. The surface elastic modulus E 

calculated from  derivative (Fig. 8a) has no physical 

meaning for the freely floating isolated islands here. 

Presumably, the nanoparticle islands coalesce gradually 

into larger assemblies with increasing surface pressure. 

The reduction of the Bragg rod width (Fig. 8c) is not 
observed because of the limited  size of the coherently 

scattering domains restricted by the nanoparticle cumu-

lative disorder in the pristine islands. In stage II, a 

steady increase in the surface pressure and elastic 

modulus is observed (Fig. 8a) as the proceeding island 
coalescence gets gradually the larger assemblies into 

contact. This accumulates stress at the assembly 

boundaries that is relieved by the nanoparticle re-

arrangements into a close-packed monolayer. 

A nearly unchanged Bragg rod maximum position 
and width (Fig. 8b,c) suggest that the local hexagonal 

order from the original islands is preserved. The nano-

particle Langmuir film at the end of stage II is com-

pletely closed, being suitable for the transfer onto a 

solid substrate to deposit a high-quality nanoparticle 

 
 

Fig. 8 – The major compression stages of the nanoparticle 

Langmuir film. The arrows show the compression and expan-

sion periods. 
 

monolayer. In stage III, a steeper increase in the sur-

face pressure followed by a maximum in the surface 

elastic modulus preceding a bilayer formation is ob-

served. A shift in the Bragg rod maximum position to 
higher qy values suggests a decrease in the lattice spac-

ing d10 by 0.1 nm (Fig. 8b) while a simultaneous in-

crease in the Bragg rod width (Fig. 8c) indicates a dete-
rioration of the nanoparticle order due to the accumu-

lated stress. Such a Bragg rod behaviour can be ex-

plained by a slight compressive deformation of the pol-

ymer surfactant capping of the nanoparticles (oleyla-

min and oleic acid). This transient compression phase 
was not observed in the experiments under steady-

state conditions. In stage IV, the peak P2 indicates a 

newly formed vertically correlated second nanoparticle 

layer allowing stress relief which results in the re-

versed shift of the Bragg rod maximum position and 
increase in the d10 lattice spacing. The Bragg rod width 

increases as well suggesting growing disorder. Such a 

simultaneous growth of the lattice spacing and disorder 

is typical for the paracrystal model [7]. The Bragg rod 

maximum position and width are not recovered during 
the film expansion, suggesting a stable nanoparticle 

order in the bilayer. These results have direct implica-

tions for preparation of large-area high-quality nano-

particle arrays. 

 
3.3 Example 3 - Nanoparticle Re-assembly on 

Surfactant Removal 
 

Colloidal metallic or metal oxide nanoparticles self-

assembled into regular arrays need to get rid off the 

surfactant shell for some applications. For example, the 

gas sensing function of metal oxide nanoparticles is 



 

GRAZING-INCIDENCE SMALL-ANGLE X-RAY SCATTERING TECHNIQUE … PROC. NAP 4, 01NTF05 (2015) 

 

 

01NTF05-5 

based on exposition of their surface to residual gases in 

ambient atmosphere to initiate chemical reactions. Here, 

the UV photolysis and ozonolysis proved to be efficient 

methods to remove the organic molecule chains bonded 

to the nanoparticle core [8]. On the other hand, the sur-
factant removal may result in distinct changes in the 

order of nanoparticle array due to a changed equilibrium 

between various forces governing the self-assembly such 

as van der Waals attraction, steric repulsion, electric or 

magnetic moments, or adhesion to the substrate [9]. 
Hence, the studies of UV/ozone driven re-assembly ef-

fects is a highly relevant issue. 
 

 

Fig. 9 – GISAXS pattern evolution during UV/ozone treatment 
 

The in situ GISAXS measurements were performed 

simultaneously with the grazing-incidence wide-angle 

X-ray scattering (GIWAXS) measurements during a 
combined UV/ozone irradiation at BL23A beamline at 

NSRRC, Taiwan. While the GISAXS probes the nano-

particle re-arrangement, the GIWAXS gives insight 

into accompanying phase transitions at the atomic lev-

el inside the nanoparticles. The solution of the same 
colloidal Ag nanoparticles as those in the Example 2 

was applied to deposit a self-assembled monolayer ar-

ray on silicon by a modified Langmuir−Schaefer meth-

od [5]. Repeating this deposition, a vertically uncorre-

lated nanoparticle bilayer was prepared. A custom de-
signed window-less UV reactor equipped with an ozone 

generating low pressure mercury lamp (h=4.9 eV, 

6.7 eV) and the total UV intensity at the sample sur-
face of 2 mW/cm2  was used. 

The most prominent feature visible in the GISAXS 

pattern before the UV/ozone treatment are the two 

symmetrical Bragg rods corresponding to the in-plane 

correlations of nanoparticle positions in the self-
assembled bilayer (Fig. 9a). Considering the nanoparti-

cle diameter determined from SAXS and the interparti-

cle distance determined from the Bragg rod position 

(see Example 2), the surfactant shell thickness of 

1.2 nm was detemined. The Fig. 9b shows an interme-

diate state after 600 s. The Bragg rods visible at the 

early surfactant removal times disappeared completely 

and the reciprocal space map shows no signs of the in-

plane nanoparticle position correlations. The Fig. 9c 

shows the final GISAXS reciprocal space map after 
1900 s where new Bragg rods at qy,1B = 0.026 nm-1 (i.e. 

very close to the central line) are visible. These Bragg 

rods correspond to the mean lateral correlation length 
 = 2/qy,1B  240 nm of the oxidized nanoparticle ag-

glomerates (see further). 
 

 

Fig. 10 – Temporal evolution of the selected cuts along qy in 

the GISAXS pattern: (a) GIWAXS, (b) GISAXS, and (c) 

HR-GISAXS 
 

To quantify the temporal evolution of the loss of the 
original nanoparticle self-assembly and the final nano-

particle agglomeration as well as the phase transition 

due to oxidation of the silver nanoparticles, specific 

areas in the GISAXS pattern were integrated and plot-

ted as a function of the UV/ ozone treatment time. The 
Fig. 10a shows the temporal evolution of GIWAXS ob-

tained by a pie-integration for q values 1.9-3.0 Å−1. For 

the pristine sample, the Ag 111 diffraction is observed 

while on the UV/ozone treatment, the −202, 111, −111, 

200 AgO diffractions appear. The Fig. 11a shows the 
integrated area under the Ag 111 and AgO −111 dif-

fractions. The full width at half-maximum (FWHM) of 

the AgO −111 diffraction peak is shown in Fig. 11b 

along with the evaluated AgO unit cell volume. The 

Fig. 10b depicts the temporal evolution of the GISAXS 
pattern line cuts along qy integrated between qz values 

0.675-0.725 nm−1. The integrated area under the 

GISAXS P1 peak of the first Bragg rod stemming from 

the pristine nanoparticle position correlations in the 

self-assembled bilayer is shown in Fig. 11c and its max-
imum position and FWHM are plotted in Fig. 11d. Fi-

nally, Fig. 10c shows the temporal evolution of the 

GISAXS pattern line cuts along qy integrated between 

qz values 0.8-0.85 nm−1 labelled as high-resolution 

GISAXS (HR-GISAXS). The temporal evolution of the 
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integrated area under the P2 peak of the newly formed 

Bragg rod is shown in Fig. 11c and its maximum posi-

tion and FWHM are plotted in Fig. 11d. 
 

 

Fig. 11 – Temporal evolution of some selected parameters 

derived from the patterns in Figs. 9, 10 
 

Relying on these results, we can distinguish four 

stages of the UV/ozone treatment (Fig. 11). In the stage 

I, a gradual decrease of the integrated area under the 

P1 Bragg peak implies a loss of the correlations in the 
self-assembled nanoparticle array due to the gradual 

removal of the surfactant molecules (Fig. 11c). The 

shift of the P1 Bragg peak toward higher qy values sug-

gests a mean interparticle spacing reduction and a na-

noparticle array densification (Fig. 11d) that can be 

attributed to better filing up the voids in the bottom 
layer by the nanoparticles from the top one during the 

rearrangement. The FWHM narrowing of the P1 Bragg 

peak implies a locally enhanced nanoparticle correla-

tion in the bottom layer (Fig. 11d). This evolution per-

sists also in stage II which is characterized by further 

decay of the nanoparticle correlations, as evidenced by 

the decreasing integrated area under the P1 Bragg 

peak, and further reduction of the mean interparticle 

distance, as shown by the P1 Bragg peak shift toward 
higher qy values) (Fig. 11c,d). 

In the GIWAXS, a decrease of the integrated area 

under the Ag 111 diffraction is observed to the end of 

stage II and continues in stage III where the appear-

ance of the AgO monoclinic phase due to the nanoparti-
cle surface oxidation after the surfactant removal is 

detected and tracked by a strong −111 diffraction 

(Fig. 11a). The oxidation is completed to the end of 

stage III. The growth of the AgO phase in the nanopar-

ticle volume is accompanied by a FWHM decrease of 
AgO −111 diffraction which suggests a more regular 

space lattice. 

The GISAXS and HR-GISAXS patterns do not ex-

hibit any Bragg rods in stage III (Fig. 10b,c) indicating 

the absence of any nanoparticle position correlations. 
The appearance of the P2 peak at low qy in stage IV 

(Fig. 10c) implies a self-assembly of AgO nanoparticles 

into large nanoparticle aggregates which continues 

even after 2000 s UV/ozone tretment as the P2 peak 

integral intensity does not come to saturation 
(Fig. 11c). The FWHM of P2 peak is constant during 

the nanoparticle agglomeration phase (Fig. 11d) which 

indicates a stable lateral correlation length during the 

agglomeration process. 

These results confirm importance of the detailed 
knowledge of the nanoparticle surfactant removal by 

UV/ozone treatment for preparation of advanced gas 

sensors based on metal oxide nanoparticles. 
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