31 research outputs found

    Multiple novel prostate cancer susceptibility signals identified by fine-mapping of known risk loci among Europeans

    Get PDF
    Genome-wide association studies (GWAS) have identified numerous common prostate cancer (PrCa) susceptibility loci. We have fine-mapped 64 GWAS regions known at the conclusion of the iCOGS study using large-scale genotyping and imputation in 25 723 PrCa cases and 26 274 controls of European ancestry. We detected evidence for multiple independent signals at 16 regions, 12 of which contained additional newly identified significant associations. A single signal comprising a spectrum of correlated variation was observed at 39 regions; 35 of which are now described by a novel more significantly associated lead SNP, while the originally reported variant remained as the lead SNP only in 4 regions. We also confirmed two association signals in Europeans that had been previously reported only in East-Asian GWAS. Based on statistical evidence and linkage disequilibrium (LD) structure, we have curated and narrowed down the list of the most likely candidate causal variants for each region. Functional annotation using data from ENCODE filtered for PrCa cell lines and eQTL analysis demonstrated significant enrichment for overlap with bio-features within this set. By incorporating the novel risk variants identified here alongside the refined data for existing association signals, we estimate that these loci now explain ∼38.9% of the familial relative risk of PrCa, an 8.9% improvement over the previously reported GWAS tag SNPs. This suggests that a significant fraction of the heritability of PrCa may have been hidden during the discovery phase of GWAS, in particular due to the presence of multiple independent signals within the same regio

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Fusion of the EWS gene to CHN, a member of the steroid/thyroid receptor gene superfamily, in a human myxoid chondrosarcoma

    No full text
    The specific chromosomal translocation t(9;22)(q22-31;q11-12) has been observed in the myxoid variant of human chondrosarcoma, In agreement with this observation we report that the EWS gene located at chromosome band 22q12 becomes fused to CHN, a member of the steroid/thyroid receptor gene superfamily located at 9q22-31, in a skeletal myxoid chondrosarcoma. CHN appears to be the human homologue of the rat gene NOR1, which was recently identified as a sequence overexpressed in rat brain cells undergoing apoptosis, Our results also indicate that the chimaeric EWS-CHN gene encodes a EWS-CHN fusion protein in which the C-terminal RNA-binding domain of EWS is replaced by the entire CHN protein, comprising a long N-terminal domain, a central DNA binding domain and a C-terminal ligand-binding/dimerisation domain

    Identification of novel genes, SYT and SSX, involved in the t(X;18)(p11.2;q11.2) translocation found in human synovial sarcoma

    No full text
    Human synovial sarcomas contain a recurrent and specific chromosomal translocation t(X;18)(p11.2;q11.2). By screening a synovial sarcoma cDNA library with a yeast artificial chromosome spanning the X chromosome breakpoint, we have indentified a hybrid transcript that contains 5′ sequences (designated SYT) mapping to chromosome 18 and 3′ sequences (designated SSX) mapping to chromosome X. An SYT probe detected genomic rearrangements in 10/13 synovial sarcomas. Sequencing of cDNA clones shows that the normal SYT gene encodes a protein rich in glutamine, proline and glycine, and indicates that in synovial sarcoma rearrangement of the SYT gene results in the formation of an SYT–SSX fusion protein. Both SYT and SSX failed to exhibit significant homology to known gene sequences

    Interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction as a diagnostic aid for synovial sarcoma

    No full text
    Identification of the t(X;18)(p11.2;q11.2) that is associated with a high proportion of synovial sarcoma can be a useful diagnostic aid. The translocation results infusion of the SYT gene on chromosome 18 to either the SSX1 or the SSX2 gene, two homologous genes within Xp11.2. Two-color interphase fluorescence in situ hybridization and reverse transcription polymerase chain reaction were assessed as approaches to identify the rearrangement in well characterized cases. The presence of the translocation, and the specific chromosome X gene disrupted, were inferred from the configuration of signals from chromosome-specific centromere probes, paints, and markers flanking each gene in preparations of interphase nuclei. Rearrangement was found in two cell lines and eight of nine tumor samples, including analysis of five touch imprints. This was consistent with cytogenetic data in four cases and reverse transcription polymerase chain reaction analysis using primers known to amplify both SYT-SSX1 and SYT-SSX2 transcripts. The transcripts were distinguished by restriction with LspI and SmaI. Contrary to previous suggestions, there was no obvious correlation between histological subtype and involvement of the SSX1 or SSX2 gene. These approaches could also be applied to the identification of tumor-free margins and metastatic disease
    corecore