225 research outputs found

    Creating a Multicultural Learning Environment at Lesley College

    Get PDF

    Russian impact on cultural identity and heritage in the middle Kuskokwim region of Alaska

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2014The objective of my research is to document the role that Russian heritage has played in the individual and group identity of Native people in the middle Kuskokwim River region of Alaska. For purposes of this study this area includes the villages of Lower Kalskag, Upper Kalskag, Aniak, Chuathbaluk, Napaimute, Crooked Creek, Red Devil, Georgetown, Sleetmute, and Stony River. The changes and adaptations that occurred in the middle Kuskokwim River area during the Russian era 1790-1867, the changes that occurred with the sale of Alaska to the United States, and the continued changes up to the present time, including the Alaska Native Claims Settlement Act (ANCSA), all impact the heritage and traditions of today. Today the middle Kuskokwim River region of Alaska includes Yup'ik, several Athabascan groups, Russian, and other European cultures. In the late 18th and early 19th centuries, Russian exploration, trading activities, and the Russian Orthodox Church changed the daily life of the indigenous population and added to the cultural blending of the region. That blending is evident even today, as Russian heritage has become part of the current Alaska Native cultural identity in the middle Kuskokwim. My study asks the following research questions: What impact did Russian explorers, traders, and Orthodox clergy have on the middle Kuskokwim River region of Alaska? How has Russian influence changed over time, and how has this Russian heritage impacted present-day cultural identity in the middle Kuskokwim region? Included is the broader discussion of how people in the region define their identity and what aspects of that identity are most important to them. Since I am using an ethnohistorical approach, I felt it was important to include an historical summary of the cultural change and indigenous adaptation during the Russian era and the changes brought about by the sale of Alaska, leading into more modern-day impacts. I interviewed 24 community members, focusing on their indigenous and Russian heritage. Interviews with two nonindigenous scholars also provided additional information on the indigenous and Russian history and culture of the region. From the semistructured interview dialogues, key themes and resonant narratives were identified. Those who were interviewed expressed indigenous values as the core of their identity including respect for elders and others, knowledge of family tree, respect for land and nature, practice of Native traditions, honoring ancestors, humility, spirituality, and importance of place. This helped me formulate an indigenous identity framework to illustrate the very complex pieces that influence identity in the middle Kuskokwim River region of Alaska. In the end, Russian heritage has been absorbed into the local culture, especially in the area of religion, and has been indigenized into a deeply rooted sense of place and ways of being and expressing Native culture. It is this indigenous rootedness that is at the core of identity in the middle Kuskokwim

    m6A RNA methylation of major satellite repeat transcripts facilitates chromatin association and RNA:DNA hybrid formation in mouse heterochromatin

    Get PDF
    Heterochromatin has essential functions in maintaining chromosome structure, in protecting genome integrity and in stabilizing gene expression programs. Heterochromatin is often nucleated by underlying DNA repeat sequences, such as major satellite repeats (MSR) and long interspersed nuclear elements (LINE). In order to establish heterochromatin, MSR and LINE elements need to be transcriptionally competent and generate non-coding repeat RNA that remain chromatin associated. We explored whether these heterochromatic RNA, similar to DNA and histones, may be methylated, particularly for 5-methylcytosine (5mC) or methyl-6-adenosine (m6A). Our analysis in mouse ES cells identifies only background level of 5mC but significant enrichment for m6A on heterochromatic RNA. Moreover, MSR transcripts are a novel target for m6A RNA modification, and their m6A RNA enrichment is decreased in ES cells that are mutant for Mettl3 or Mettl14, which encode components of a central RNA methyltransferase complex. Importantly, MSR transcripts that are partially deficient in m6A RNA methylation display impaired chromatin association and have a reduced potential to form RNA:DNA hybrids. We propose that m6A modification of MSR RNA will enhance the functions of MSR repeat transcripts to stabilize mouse heterochromatin

    Large Exchange Bias, High Dielectric Constant, and Outstanding Ionic Conductivity in a Single Phase Spin Glass

    Get PDF
    The multigram synthesis of K [Fe S ] starting from K S and FeS is presented, and its electronic and magnetic properties are investigated. The title compound obtains a defect variant of the K[Fe Se ] structure type. Dielectric and impedance measurements indicate a dielectric constant of 1120 at 1 kHz and an outstanding ionic conductivity of 24.37 mS cm at 295 K, which is in the range of the highest reported value for potential solid state electrolytes for potassium ion batteries. The Seebeck coeffcient of the n type conductor amounts to amp; 8722;60 amp; 956;V K at 973 K. The mismatch of the measured electrical resistivity and the predicted metal like band structure by periodic quantum chemical calculations indicates Mott insulating behavior. Magnetometry demonstrates temperature dependent, large exchange biasfields of 35 mT, as a consequence of the coexistence of spin glass and antiferromagnetic orderings due to the iron vacancies in the lattice. In addition, the decreasing training effects of 34 in the exchange bias are identified at temperatures lower than 20 K. These results demonstrate the critical role of iron vacancies in tuning the electronic and magnetic properties and a multifunctional material from abundant and accessible element

    Accumulation of an Antidepressant in Vesiculogenic Membranes of Yeast Cells Triggers Autophagy

    Get PDF
    Many antidepressants are cationic amphipaths, which spontaneously accumulate in natural or reconstituted membranes in the absence of their specific protein targets. However, the clinical relevance of cellular membrane accumulation by antidepressants in the human brain is unknown and hotly debated. Here we take a novel, evolutionarily informed approach to studying the effects of the selective-serotonin reuptake inhibitor sertraline/Zoloft® on cell physiology in the model eukaryote Saccharomyces cerevisiae (budding yeast), which lacks a serotonin transporter entirely. We biochemically and pharmacologically characterized cellular uptake and subcellular distribution of radiolabeled sertraline, and in parallel performed a quantitative ultrastructural analysis of organellar membrane homeostasis in untreated vs. sertraline-treated cells. These experiments have revealed that sertraline enters yeast cells and then reshapes vesiculogenic membranes by a complex process. Internalization of the neutral species proceeds by simple diffusion, is accelerated by proton motive forces generated by the vacuolar H+-ATPase, but is counteracted by energy-dependent xenobiotic efflux pumps. At equilibrium, a small fraction (10–15%) of reprotonated sertraline is soluble while the bulk (90–85%) partitions into organellar membranes by adsorption to interfacial anionic sites or by intercalation into the hydrophobic phase of the bilayer. Asymmetric accumulation of sertraline in vesiculogenic membranes leads to local membrane curvature stresses that trigger an adaptive autophagic response. In mutants with altered clathrin function, this adaptive response is associated with increased lipid droplet formation. Our data not only support the notion of a serotonin transporter-independent component of antidepressant function, but also enable a conceptual framework for characterizing the physiological states associated with chronic but not acute antidepressant administration in a model eukaryote

    Membrane-Lipid Therapy in Operation: The HSP Co-Inducer BGP-15 Activates Stress Signal Transduction Pathways by Remodeling Plasma Membrane Rafts

    Get PDF
    Aging and pathophysiological conditions are linked to membrane changes which modulate membrane-controlled molecular switches, causing dysregulated heat shock protein (HSP) expression. HSP co-inducer hydroxylamines such as BGP-15 provide advanced therapeutic candidates for many diseases since they preferentially affect stressed cells and are unlikely have major side effects. In the present study in vitro molecular dynamic simulation, experiments with lipid monolayers and in vivo ultrasensitive fluorescence microscopy showed that BGP-15 alters the organization of cholesterol-rich membrane domains. Imaging of nanoscopic long-lived platforms using the raft marker glycosylphosphatidylinositol-anchored monomeric green fluorescent protein diffusing in the live Chinese hamster ovary (CHO) cell plasma membrane demonstrated that BGP-15 prevents the transient structural disintegration of rafts induced by fever-type heat stress. Moreover, BGP-15 was able to remodel cholesterol-enriched lipid platforms reminiscent of those observed earlier following non-lethal heat priming or membrane stress, and were shown to be obligate for the generation and transmission of stress signals. BGP-15 activation of HSP expression in B16-F10 mouse melanoma cells involves the Rac1 signaling cascade in accordance with the previous observation that cholesterol affects the targeting of Rac1 to membranes. Finally, in a human embryonic kidney cell line we demonstrate that BGP-15 is able to inhibit the rapid heat shock factor 1 (HSF1) acetylation monitored during the early phase of heat stress, thereby promoting a prolonged duration of HSF1 binding to heat shock elements. Taken together, our results indicate that BGP-15 has the potential to become a new class of pharmaceuticals for use in ‘membrane-lipid therapy’ to combat many various protein-misfolding diseases associated with aging

    Designer Lipid-Like Peptides: A Class of Detergents for Studying Functional Olfactory Receptors Using Commercial Cell-Free Systems

    Get PDF
    A crucial bottleneck in membrane protein studies, particularly G-protein coupled receptors, is the notorious difficulty of finding an optimal detergent that can solubilize them and maintain their stability and function. Here we report rapid production of 12 unique mammalian olfactory receptors using short designer lipid-like peptides as detergents. The peptides were able to solubilize and stabilize each receptor. Circular dichroism showed that the purified olfactory receptors had alpha-helical secondary structures. Microscale thermophoresis suggested that the receptors were functional and bound their odorants. Blot intensity measurements indicated that milligram quantities of each olfactory receptor could be produced with at least one peptide detergent. The peptide detergents' capability was comparable to that of the detergent Brij-35. The ability of 10 peptide detergents to functionally solubilize 12 olfactory receptors demonstrates their usefulness as a new class of detergents for olfactory receptors, and possibly other G-protein coupled receptors and membrane proteins.United States. Defense Advanced Research Projects Agency (DARPA-HR0011-09-C-0012)Massachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Expression-Dependent Folding of Interphase Chromatin

    Get PDF
    Multiple studies suggest that chromatin looping might play a crucial role in organizing eukaryotic genomes. To investigate the interplay between the conformation of interphase chromatin and its transcriptional activity, we include information from gene expression profiles into a polymer model for chromatin that incorporates genomic loops. By relating loop formation to transcriptional activity, we are able to generate chromosome conformations whose structural and topological properties are consistent with experimental data. The model particularly allows to reproduce the conformational variations that are known to occur between highly and lowly expressed chromatin regions. As previously observed in experiments, lowly expressed regions of the simulated polymers are much more compact. Due to the changes in loop formation, the distributions of chromatin loops are also expression-dependent and exhibit a steeper decay in highly active regions. As a results of entropic interaction between differently looped parts of the chromosome, we observe topological alterations leading to a preferential positioning of highly transcribed loci closer to the surface of the chromosome territory. Considering the diffusional behavior of the chromatin fibre, the simulations furthermore show that the higher the expression level of specific parts of the chromatin fibre is, the more dynamic they are. The results exhibit that variations of loop formation along the chromatin fibre, and the entropic changes that come along with it, do not only influence the structural parameters on the local scale, but also effect the global chromosome conformation and topology

    Polypeptide-grafted macroporous polyHIPE by surface-initiated N-Carboxyanhydride (NCA) polymerization as a platform for bioconjugation

    Get PDF
    A new class of functional macroporous monoliths from polymerized high internal phase emulsion (polyHIPE) with tunable surface functional groups was developed by direct polypeptide surface grafting. In the first step, amino-functional polyHIPEs were obtained by the addition of 4-vinylbenzyl or 4-vinylbenzylphthalimide to the styrenic emulsion and thermal radical polymerization. The obtained monoliths present the expected open-cell morphology and a high surface area. The incorporated amino group was successfully utilized to initiate the ring-opening polymer- ization of benzyl-L-glutamate N-carboxyanhydride (BLG NCA) and benzyloxycarbonyl-L-lysine (Lys(Z)) NCA, which resulted in a dense homogeneous coating of polypeptides throughout the internal polyHIPE surfaces as confirmed by SEM and FTIR analysis. The amount of polypeptide grafted to the polyHIPE surfaces could be modulated by varying the initial ratio of amino acid NCA to amino-functional polyHIPE. Subsequent removal of the polypeptide protecting groups yielded highly functional polyHIPE-g-poly(glutamic acid) and polyHIPE-g- poly(lysine). Both types of polypeptide-grafted monoliths responded to pH by changes in their hydrohilicity. The possibility to use the high density of function (−COOH or −NH2) for secondary reaction was demonstrated by the successful bioconjugation of enhanced green fluorescent protein (eGFP) and fluorescein isocyanate (FITC) on the polymer 3D-scaffold surface. The amount of eGFP and FITC conjugated to the polypeptide-grafted polyHIPE was significantly higher than to the amino- functional polyHIPE, signifying the advantage of polypeptide grafting to achieve highly functional polyHIPEs

    In vivo evaluation of [18F]fluoroetanidazole as a new marker for imaging tumour hypoxia with positron emission tomography

    Get PDF
    Development of hypoxia-targeted therapies has stimulated the search for clinically applicable noninvasive markers of tumour hypoxia. Here, we describe the validation of [18F]fluoroetanidazole ([18F]FETA) as a tumour hypoxia marker by positron emission tomography (PET). Cellular transport and retention of [18F]FETA were determined in vitro under air vs nitrogen. Biodistribution and metabolism of the radiotracer were determined in mice bearing MCF-7, RIF-1, EMT6, HT1080/26.6, and HT1080/1-3C xenografts. Dynamic PET imaging was performed on a dedicated small animal scanner. [18F]FETA, with an octanol–water partition coefficient of 0.16±0.01, was selectively retained by RIF-1 cells under hypoxia compared to air (3.4- to 4.3-fold at 60–120 min). The radiotracer was stable in the plasma and distributed well to all the tissues studied. The 60-min tumour/muscle ratios positively correlated with the percentage of pO2 values <5 mmHg (r=0.805, P=0.027) and carbogen breathing decreased [18F]FETA-derived radioactivity levels (P=0.028). In contrast, nitroreductase activity did not influence accumulation. Tumours were sufficiently visualised by PET imaging within 30–60 min. Higher fractional retention of [18F]FETA in HT1080/1-3C vs HT1080/26.6 tumours determined by dynamic PET imaging (P=0.05) reflected higher percentage of pO2 values <1 mmHg (P=0.023), lower vessel density (P=0.026), and higher radiobiological hypoxic fraction (P=0.008) of the HT1080/1-3C tumours. In conclusion, [18F]FETA shows hypoxia-dependent tumour retention and is, thus, a promising PET marker that warrants clinical evaluation
    corecore