160 research outputs found

    Robust controller designs for second-order dynamic system: A virtual passive approach

    Get PDF
    A robust controller design is presented for second-order dynamic systems. The controller is model-independent and itself is a virtual second-order dynamic system. Conditions on actuator and sensor placements are identified for controller designs that guarantee overall closed-loop stability. The dynamic controller can be viewed as a virtual passive damping system that serves to stabilize the actual dynamic system. The control gains are interpreted as virtual mass, spring, and dashpot elements that play the same roles as actual physical elements in stability analysis. Position, velocity, and acceleration feedback are considered. Simple examples are provided to illustrate the physical meaning of this controller design

    An overview of recent advances in system identification

    Get PDF
    This paper presents an overview of the recent advances in system identification for modal testing and control of large flexible structures. Several techniques are discussed including the Observer/Kalman Filter Identification, the Observer/Controller Identification, and the State-Space System Identification in the Frequency Domain. The System/Observer/Controller Toolbox developed at NASA Langley Research Center is used to show the applications of these techniques to real aerospace structures such as the Hubble spacecraft telescope and the active flexible aircraft wing

    Slewing control experiment for a flexible panel

    Get PDF
    Technology areas are identified in which better analytical and/or experimental methods are needed to adequately and accurately control the dynamic responses of multibody space platforms such as the space station. A generic space station solar panel is used to experimentally evaluate current control technologies. Active suppression of solar panel vibrations induced by large angle maneuvers is studied with a torque actuator at the root of the solar panel. These active suppression tests will identify the hardware requirements and adequacy of various controller designs

    State-Space System Realization with Input- and Output-Data Correlation

    Get PDF
    This paper introduces a general version of the information matrix consisting of the autocorrelation and cross-correlation matrices of the shifted input and output data. Based on the concept of data correlation, a new system realization algorithm is developed to create a model directly from input and output data. The algorithm starts by computing a special type of correlation matrix derived from the information matrix. The special correlation matrix provides information on the system-observability matrix and the state-vector correlation. A system model is then developed from the observability matrix in conjunction with other algebraic manipulations. This approach leads to several different algorithms for computing system matrices for use in representing the system model. The relationship of the new algorithms with other realization algorithms in the time and frequency domains is established with matrix factorization of the information matrix. Several examples are given to illustrate the validity and usefulness of these new algorithms

    Robust eigensystem assignment for second-order estimators

    Get PDF
    An approach for the robust eigensystem assignment of flexible structures using full state or output feedback is developed. Using the second-order dynamic equations, the approach can assign the eigenvalues of the system via velocity and displacement feedbacks, or acceleration and velocity feedbacks. The eigenvalues and eigenvectors of the system are assigned, via the second-order eigenvalue problem for the structural system, in two steps. First, an orthonormal basis spanning the attainable closed-loop eigenvector space corresponding to each desired closed-loop eigenvalue is generated using the Singular Value or QR decompositions. Second, a sequential procedure is used to choose a set of closed-loop eigenvectors that are as close as possible to the column space of a well-conditioned target matrix. Among the possible choices of the target matrix, the closest unitary matrix to the open-loop eigenvector matrix appears to be a suitable choice. A numerical example is given to illustrate the proposed algorithm

    Linear system identification via backward-time observer models

    Get PDF
    Presented here is an algorithm to compute the Markov parameters of a backward-time observer for a backward-time model from experimental input and output data. The backward-time observer Markov parameters are decomposed to obtain the backward-time system Markov parameters (backward-time pulse response samples) for the backward-time system identification. The identified backward-time system Markov parameters are used in the Eigensystem Realization Algorithm to identify a backward-time state-space model, which can be easily converted to the usual forward-time representation. If one reverses time in the model to be identified, what were damped true system modes become modes with negative damping, growing as the reversed time increases. On the other hand, the noise modes in the identification still maintain the property that they are stable. The shift from positive damping to negative damping of the true system modes allows one to distinguish these modes from noise modes. Experimental results are given to illustrate when and to what extent this concept works

    Research in slewing and tracking control

    Get PDF
    Technology areas are identified in which better analytical and/or experimental methods are needed to adequately and accurately control the dynamic responses of multibody space platforms such as the Space Station and the Radiometer Spacecraft. A generic space station model is used to experimentally evaluate current control technologies and a radiometer spacecraft model is used to numerically test a new theoretical development for nonlinear three-axis maneuvers. Active suppression of flexible body vibrations induced by large angle maneuvers is studied with multiple torque inputs and multiple measurement outputs. These active suppression tests identify the hardware requirements and adequacy of various controller designs

    Decentralized control of large flexible structures by joint decoupling

    Get PDF
    A decentralized control design method is presented for large complex flexible structures by using the idea of joint decoupling. The derivation is based on a coupled substructure state-space model, which is obtained from enforcing conditions of interface compatibility and equilibrium to the substructure state-space models. It is shown that by restricting the control law to be localized state feedback and by setting the joint actuator input commands to decouple joint 'degrees of freedom' (dof) from interior dof, the global structure control design problem can be decomposed into several substructure control design problems. The substructure control gains and substructure observers are designed based on modified substructure state-space models. The controllers produced by the proposed method can operate successfully at the individual substructure level as well as at the global structure level. Therefore, not only control design but also control implementation is decentralized. Stability and performance requirement of the closed-loop system can be achieved by using any existing state feedback control design method. A two-component mass-spring damper system and a three-truss structure are used as examples to demonstrate the proposed method

    Intergration of system identification and robust controller designs for flexible structures in space

    Get PDF
    An approach is developed using experimental data to identify a reduced-order model and its model error for a robust controller design. There are three steps involved in the approach. First, an approximately balanced model is identified using the Eigensystem Realization Algorithm, which is an identification algorithm. Second, the model error is calculated and described in frequency domain in terms of the H(infinity) norm. Third, a pole placement technique in combination with a H(infinity) control method is applied to design a controller for the considered system. A set experimental data from an existing setup, namely the Mini-Mast system, is used to illustrate and verify the approach

    Identification of linear multivariable systems from a single set of data by identification of observers with assigned real eigenvalues

    Get PDF
    A formulation is presented for identification of linear multivariable from a single set of input-output data. The identification method is formulated with the mathematical framework of learning identifications, by extension of the repetition domain concept to include shifting time intervals. This method contrasts with existing learning approaches that require data from multiple experiments. In this method, the system input-output relationship is expressed in terms of an observer, which is made asymptotically stable by an embedded real eigenvalue assignment procedure. Through this relationship, the Markov parameters of the observer are identified. The Markov parameters of the actual system are recovered from those of the observer, and then used to obtain a state space model of the system by standard realization techniques. The basic mathematical formulation is derived, and numerical examples presented to illustrate
    corecore