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Abstract

A novel design of a state estimator is presented using
second-order dynamic equations of mechanical systems. The

eigenvalues and eigenvectors of the state estimator are as-
signed by solving the second-order eigenvalue problem'0f
the slructural system. Three design methods for the state
estimator are given in this paper. The first design method
uses collocated sensors to measure the desired signals and
their derivatives. The second design method uses prefilters

to shift signal phases to obtain estimates of the signal deriva-
lives. These two methods are used to build a second-order
state estimator model. The third design method is the con-
ventional one which converts a typical second-order dynamic
model to a first-order model, and then builds a state estimator
based on the first-order model. It is shown that all the three

designs for state estimation are similar. A numerical example
representing a large space sl_cture is given for illustration
of the design methods presented in this paper.

Introduction

Structural dynamic systems are generally described by
second-order ditIerential equations with symmetric and

sparse structural matrices. Structural engineers and analysts
perform dynamic analyses by taking full advantage of the
symmetry and sparsity of the structural malrices to minimize
the computational burden and keep physical insight intacL

For example, it is obviously easier to solve the eigenvalues
of a symmetric and sparse man-ix than a general matrix. On
the other hand, control theory including estimation theory

are established using first-order dynamic equations. Exist-
ing control software tools today are thus wriuen in first-
order forms. In applications to structural dynamic systems,
a composite state vector is used to transform the second-
order dynamic equations to a larger dimensional first-order
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form. Transformation to the first-order form not only in-
creases the dimension by a factor of two but also destroys

the symmetry of the structural matrices. As a result, signif-
icant model reduction is generally required before any con-
troller.or.state estimator design can be accomplished, be-
cause of the numerical difficulty associated with the solution
of high dimensional equations such as Riccati equations. A
number of researchers 1-t have investigated model reduc-
tion to circumvent the dimension problem. An alternative

approach to model reduction is to preserve the second-order
dynamic equations in designing the controller or state esti-
mator. Recently, several researchers e-l° have addressed the

computational advantages of designing controllers and state
estimators directly using the second-order structural models.

The state estimator plays a major role in controller de-

signs using state feedback under the constraint that the num-
ber of sensors is less than the number of states. Second-order

state estimator models have just recently received attention in
the literature. An optimal state estimator known as Kalman
Filter has been used in Ref. 6 for discretized second-order

slrucmral models. Robust computational procedures for solv-

hag Kalman Filter estimation error covariance ma_ices have
been developed for second-order models in Ref. 7. A dissi-
pative state estimator in second-order form was introduced in
Re£ 8..This" stat¢ estimator was analogous to a dissipative
controller9 with collocated sensors and actuators whereby

positive definite feedback gains were designed to insure sta-
bility. The computational advantages of second-order state
estimator models are discussed in Refs. 10 and 11.

The objective of this paper is to develop a robust state
estimator for use with robust controllers. This research was

stimulated by the work in Refs. 10 and 11 where sub-optimal
second-order observers were developed using optimal control

theory. The approach of this paper is to extend the technique
presented in Ref. 12 for robust eigensystem assignment of
second-order controllers. As in Ref. 12, the technique takes

advantage of a second-order form of the system equations
(instead of transforming to a first-order form) which results
in considerable computational efficiency. The technique can
handle any forms of feedbacks, i.e., displacement, velocity,
and acceleration. It is known that the controller and state
estimator in the first-order form are dual in a mathematical
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sense, which implies that the design freedoms are identical.
The question arises whether the same statement is _ for the
second-order form. It will be shown that the design freedoms
for the second-order state estimators are only haft of those
for second-order controllers (see Ref. 12). Therefore, this

paper presents methods of obtaining the additional freedoms
which are needed to complete the design process.

In this paper, three methods for the design of state estima-
tors having second-order models are presented using eigen-
system assignment techniques. The first design method uses
collocated sensors to measure signals and their correspond-

hag derivatives to gain full freedom to build a second-order
state estimator model. The technique used in this design

assigns the eigenvalues such that the resulting closed-loop
system is robust with respect to system parameter uncer-
tainties. This is accomplished by requiring the closed-loop
eigenvectors to be as close as possible to theeolumn-space of.
a well..eonclirioned matrix. The second design method uses
a second-(_ler prefilter design in place of collocat_ mea-
surements of the signals and their derivatives as required in
the first design method. Here, the prefilter is designed to

shift the phase of the signals, thus replicating the effects of
the signal derivatives in the first design. The third design
method is the traditional state estimator design in which the
estimator is constructed based on a first-order model of the

system. However, the gain matrix is computed through a
sexamd-order model. It is demonstrated that a second-order
state estimator together with a preRlter design has the same
design freedoms as the conventional first-order state esti-
mator. A numerical example is given to demonstrate the

proposed method.

State Estimators _th Measurement Signals
and their Derivatives

In vibration control of flexible structures, two set of

second-order linear, constant coefficient, ordinary differential

equations are frequently used. These equations, in. matrix.
form, are

M_ + D_ + Kx = Bu (1)

= H_ + H_x. (2)

Equation(I)isthesystemdynamicequationhavingz as the
statevectorofdimensionn,and M, D, and K asthemass,

dampingandstiffnessman-ices,respectively,whichgenerally

aresymme_ic and sparse.The n x p influence matrix B
describestheconWolforcedistributionforthep × 1control

force vector u, Equation (2) is the measurement equation
having y as the measurement vector of length m, Hu the
m × n velocity influence mallq_xand Ha the m ×n deflection
influence matrix.

If the measurement vector y in Eq. (2) is used directly for
a feedback control design, an output feedback conlroller is
obtained. The output feedback control is generally attractive
because it is simple and easy for real lime implementation.

However, a stable and robust output feedback controller
may require either too many measurements which arcnot
practical, or some measurement devices which arc not yet
available and need to be developed. On the other hand,
the slate feedback control law assumes that all states are

measurable. In many practical control designs for flexible
structures, it is physically or economically impractical to
install the sensors that would be necessary to measure all the
states. For such cases, a state estimator is needed to estimate

the states from the measurement outputs, and provide enough
freedom for a stable and robust feedback controller design.

The basic approach of estimating the states is to simulate
the state and output measurement equations of the system
on a computer with an assumed initial state vector. In other
words, Eqs. (1) and (2) are simulated on a computer with
thesame input u as appliedtotheactualphysical system.
For.noise-free.anduncertainty-freecases,thestatesofthe

simulatedsystem,i.e.theestimatedstates,willthenbe

identicaltothestatesof theactualsystemsifinitialstates

arethesame.However,theactualsystemmay be subjected
touumeasurabledisturbanceswhichcannotbe usedinthe

simulationbutaffecttheoutputmeasurements.Inorderto
make sum thattheestimatedstatedoesnotdeviatetoomuch

fromtheactualstatevalues,thedifferencebetweentheactual

outputandtheestimatedoutputshouldbeusedasone ofthe

drivinginputsintheestimationequation.

Letthestaleestimationand theoutputequationsbe

M_ + D_: + K_ = Bu + Ld(Y - f/) + L,,(_I - _1) (3)

= H_ _+ Ha_ (4)

where _ is the estimated statevector of length n, _/the
estimated output of length m, and La and._ the n x m state
estimator gain matrices. Here, in contrast to the conventional
approach, an additionalterm,/__(_/-_}),isadded toEq.(3)to

penalize the difference between the actual output derivative
and estimated output derivative. Wh_y the additional term
is added'in Eq. (3) wiil be explained in detail later. Note
that it is not wise to differentiate measurement signals to

generate this additional term for real time implementation.
Additional sensors are recommended for use in measuring

the derivatives of measurement signals.

To determine the matrices Lv and La , define the esri-
marion error as

e = z - :_. (5)

Subtracting Eq. (3) from Eq. (1) and employing the relation-
ship given in Eqs. (2) and (4), the error equation becomes

[M+ L_B_]_ + [D+ L_Ha + LaH_]_ + [K+ LaHa]e = O.
(6)

A questionarisesastoffanappropriatechoice of the gain

matrices/._and La willmove theeigenvaluesofEq. (6)

to the left-hand plane so that the steady-state valueof e(0
for any initial condition is zero, i.e. lira e(t) = O. The

t-*oo
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following paragraphs present a novel way of synthesizing
the matrices/__ and Ld.

Assume that the system, Eqs. (1) and (2), is observable.
The left elgenvectors _ and elgenvalues At for the system
in Eq. (6) are related by the equation

"_T {[.Mr + LvHv]_ i -F [D + LvFI d + Ld]Iv]_k + [K + Ld]Id] } = O;

k= 1,...,n.

The subscript k refers to the mode number.
Eq. (7) in a compact matrix form yields

(7)

Rearranging

[(AIM+AtD+ I0]

k = l,...,n. (8)

The Wanspose of this equation gives

{_k_z_k+Ldr)_t]

= rt_¢_ = 0; k = 1, ..., n. O)

If the closed-loop eigenvalues At (k = 1,..., n) and their

complex conjugates are assigned, Eq. (9) can be used to
determine the gain matrices ]._ and Ld. Because the vector
et is in the null space of the matrix rt, it is necessary to
compute the null spaces of the ma_ices rt (k = 1,..., n)
corresponding to the desired eigenvalues At (k = 1,... ,_).
To obtain the nontrivial solution space of the homogeneous

equation (9), the singular value decomposition (SVD) is

applied to the matrix rt yielding

[o' r ,lrt = v:,#; = vt LV;_J. (I0)

BecauseAt inrt isa complexvalue,allthequantitiesare

complexexceptthediagonalmatrixat whichcontainsthe

nonzeroandpositivesingularvalues.Herethesuperscript•

means transposeand complexconjugate.Itfollowsthat

thematrixVot representsa setoforthogonalbasisvectors

spanningthenullspaceofthematrixrt so that

rkek = rtV_kck= 0 (11)

where ct is an arbitrary column vector with an appropriate
length. Note that ff rt is well-conditioned (i.e. not close to a
matrix of lesser rank which is easily found from the singular

values;hencetheadvantageofusingSVD), theabovebasis

fornullspaceVotcanbecomputedmoreellicienflybytaking

theQR decompositionofr_..Ifthematrix[A_M+AtD+K]

is invertible, the vector _ _1', where _t is an arbitrary

vector of length p and _t = - [A_M+ At D+ K]- 1[At_ +

/_d ]_t, is in the null space of the matrix Ft.
To obtain an expression for gain matrices L_ and La,

choosea particularsetof vectors,et = Vokct (k =

1,...,n)satisfyingEq. (9),correspondingtosome choice
ct, and partition the vector et into two components such
that

ComparisonofEqs. (9)and (12) yields

(12)

L_^ + Ld_= ¢ (13)

where the n X n matrix¢ = _1,_,"" ,_n], the m X n

matrix <_ = [_, _,..., _n] and the n × n matrix A =
diag[A1, A2,..., An]. TO solve for the gain matrices Lv and
I,d. (Both_maUice_s,are xeal), decompose Eq. (13) into real
and imaginaryparts to yield

:f_,^, __:,_]+ zr¥, = ¢, (14a)

or in matrix form

Lr_ -[L_ L_] /

= [,t_ 4,,] -,i,.

(_,^,-_,A,) 1
$, J

(15)
Here, the subscripts r and i respectively refer to the real

and imaginary parts of the associated quantifies. The gain
matrices Lo and Ld can be obtained from Eq. (15)

[(_,& +¥_^,) (_,_, -_&)l -_
(16)

A matrix inversion is required in the computation of the

gain matrices Lv and Ld. However, ff the number of eigcn-
valuestobe assigned is less than thenumberassignable,n,

Eq. (ll)becomesunderdeterminedwhichleadsnaturallyto
a minimum gainsolution.To assurethattheabovematrix

• iswell-conditionedforinversion,theconditionnumberof

thematrix_ shouldbc thesmallestpossible.Interestingly,

theabovenumericalrequirementforthewell-conditioning

ofthemalrixinversionproblemcorrespondsexactlytothe

eigenvalueconditioningproblemsince• consistsofeigen-

valuesand eigenvectors.For sufficientlysmalldamping_

D and smallrealpartof theclosedeigcnvalueAt, 4'iin

Eq. (15) approacheszero,becauseallthe null spacescor-

respondingtort (_= I,...,n) arcnearlyintherealdo-
main. The matrix_I,inEq. (15)can be approximatedby

"_ = diag['¢rAi er ]. In structural dynamics terminology,
it indicates that for small damping and small real part of the

eigen,_alues assigned for the closed-loop model, the real part
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of the closed-loop eigenvector matrix _r dominates the con-
ditioning of the matrix q_. The closed-loop eigenvectors are
chosen and discussed in the following section.

EigenvectorAssignmentfor Robustness

Define an n x n well-conditioned matrix Ho, with vectors

hol,ho2,... ,hon as its columns. Then, the closed-loop
eigenvectors are chosen to be as close as possible to the
range space of the columns of matrix Ho to achieve a robust
closed-loop design. If the open-loop conditioning is good to
begin with, then the columns of man-ix H0 may be chosen
to correspond to the open-loop eigenvectors, i.e.,

h0k=%k ; k=l,2,...,n. (17)

In general, the choice of the open-loop eigenvector _hot_is
arbilrary as long as the resulting c,ioseA-loop.eigonvectors
are linearlyindependent. If the conu,ol systemis used

onlytoprovideactivedamping,and theclosed-loopdamped

frequencies are quite close to their open-loop values, then
it is best to use the open-loop eigenvector corresponding to

an eigenvalue with the same (or similar) frequency for the
vector _ok in Eq. (17).

Alternatively, the matrix Ho may be chosen to be an
arbitrary unitary matrix (with perfect conditioning), or the
closest unitary matrix to the open-loop eigenvectors. In
the latter case, the matrix Ho is then the solution of the

constrained least square problem minimizing

I '0-aol

subject to H_ HO = I

which leads to

H0 = U$¥* (18)

where U and W are, respectively, the left and right singular
vectors of the open-loop eigenvector malrix _o, and I is

an n x n identitymatrix.It is notedthatby choosingthe

closed-loopeigenvectorstobe as closeas possibleto the
column spaceof matrixHo the closed-loopconditioning

ofthesecond-ordersystemrepresentedby Eq. (9)willbe
enhanced.However,an additionalrequirementisneededto

ensurethewell-conditioningoftheactualsystemofEq.(6),

and that is to require that the estimator gains be as small as
possible.

Having defined Ho, the closed-loop eigenvectors _,

_k = 37okek, k = 1,2,...,n, and the conesponding
coefficientvectors ck are computed throughthefollowing
sequential three steps.

Step (I): Obtain the vector in the attainable closed-loop
eigenvector space, _7oI (see Eq. (12)), corresponding to the
first closed-loop eigenvalue, which is as close as possible

to the range space of the columns of matrix Qo - [H: 1,

where No is a p x n null matrix. The vector can be ob'tain_!

from the algorithm described by Golub and Van Loan is for
the computation of principal angles and vectors of a subspace
pair. Expand both mau'ices 17ol and Qo in terms of their QR
decomposition, i.e.,

Vol = QVo, R.Voz ; QO = QQoRQo. (19)

Here _ol and QQo are orthonormal matrices of dimensions
(n+p) xpand (n+p) xn, respectively, and/_ . and/_o
are p x p and n x n upper Uiangular matrice.s,'r[[pectively.

Projectthe vectors Qvo_ unto QQo to obtain

H = Q;,zQqo. (20)

The singular values of matrix H are cosines of the principal

angles of the subspace pair {_Qp-o_),8_(QQo)}. is Where

....._ ) denotes the range space of (). Taking the singular
value decomposition of H, gives

H = YSZ" (21)

in which Y and Z are unitary matrices, and the matrix S
contains the singular values of H, i.e.,

S= :

0

•..

o2

0

0

"eoeO 1 ...... 0

: eoJO 2

• , •

: co#Op

0 ...... 0

(22)

Note that the singular values 01,..., ¢7pare all positive and
less than or equal m 1 because the malrix//is formed by
orthonormal matrices as showqq in Eq. (20). The angles

01_... ,0v are. the principal angles of the subspace pair.
Having in mind that I >__vl _>a_ >_... >_ap, the vector

in the orthonormal columns of C_roz which is closest to the
column space of QQo is then

(23)

in which y represents the first column of malyix Y. Choosing
the first closed-loop eigenvecmr to be _, the coefficients ci

of Eq. (12) become

1
= (24)

Note that/_Vo_ defined in Eq. (19) is a nonsingnlar matrix.
Step (2): Reduce the column space of matrix Q0 by the

vector _, in orde_ m ensure the linear independence of the
closed-loop eigenvectors. If _1 is not in the column space

of Qo, then reduce the column space by the closest vector
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in thespace to the vector _>1. The new subspace is spanned
by the columns of matrix Qt defined as

Qz = [qo -,_Oo VQoVOJ (25)

where z is the first column of matrix Z. Note that the
columnsof matrix Qa areorthogonal to the vectorQooz, i.e.,
z°Q* Qz = o. Equation (25) may not be computationally
efficient. It is shown here just for simplicity andclarity, and
other computational procedures to compute Qt may be used
instead.

Step (3): Repeat steps (1) and (2) for the remaining n- 1
eigenvalues. For the s"theigenvalue the column space of
matrix Qi-1 is reduced by the vector Qq¢_lz resulting in a
new matrix Qi,

ft ZZ* ft* •Qi = [Q_-a - _0,-_ WQ,_, Q_-I]. (26)

In summary, following the developments outlined in steps
(1)-(3), the closed-loop eigenvectors are chosen to be as close
aspossiblem thecolumnspaceofawell-conditionedmatrix

Ho and the estimator gain matrix elements are designed to be
as small as possible, thereby resulting in a robust closed-loop

design.

Note that theaboveformulationsarenearlyidentical to

the eigensystem assignment with full state feedback 12 except
for slight differences in the matrix rt defined in Eq. (9),
i.e. the malrix B in the case of full state feedback is

replaced by matrix [A_/]_ +//'if] for the state estimator.

Computationally, both statefeedbackand stateestimator

designsareidentical.

Let uscome backtodiscussthetermLv(_/-_)which

was added in Eq. (3) to gain more fzeedoms and make the
estimator problemdual to the state feedbackproblem. Exam-
iuation of Eq. (13) reveals that when L_T = O, LdT = _,_-1
which is, in general, a complex matrix. It thus contradicts
the requirement that the gain matrix LdT must be real. Note

that ¢_-1 is function of the closed-loop eigenvalues of the
state estimator. Consequently. it is immediately concluded
that,withtheabsenceofL_, thesolutionofthegainmatrix

L inrealdomain,ingeneral,doesnotexist.However,there

may existcertaineigenvaluesforthestateestimatorsuchthat

_,_-x isreal.Forexample,givena setofdesiredestimator

eigenvalues,thegainmatrices,Lv and La ,arecomputed
from Eq. (16).Using theapproachshown inRef.I0,L=

isomittedfromEq. (6),and theeigenvaluesofthesystem

inEq. (6)may be stillintheleft-halfplane.However,the
eigenvaluesthusobtainedare,ingeneral,differentfromthe

desiredoneswhichareoriginallyusedtocomputethema-

tricesL_ and La. However, ff the eigenvalues satisfy the

performance requirements, it can be used for real lime im-
plementation. To thisend,itisconcludedthat,usingthe
second-orderdynamicmodelfordesignofstateestimators,

requiresan additionalexpenseinthesensethatcollocated
sensorsmay be neededformeasuringthesignalsand their
derivatives.

State Estimators with Measurement Signals
and Prefilters

Insome cases,collocatedsensorsformeasuringsignals
and theirderivativesarenotavailable.An alternateway

isneededtogainthefreedom fordesigningthestateesti-

matorsusingsecond-orderdynamic models.The purpose
of addingsensors,as discussedpreviously,isto measure

signal derivativesto obtainsignals with differentphasesso
as to gainenoughfreedomforthestateestimatordesign.

Therearemany otherways to shiftsignalphaseswithout
additional sensors. An alternative is the use of prefilter m

approximately estimate the signal derivatives.

Levee stateestimatmn and the output equations be

M'_ 4- Dx + KS = Bu + Ld(y - f/) + Lv(z - _) (27)

_2+ P_ + Qz = y (i.e. H,_z + FIaz) (28)

and
z + Pz + Q_ = 9 (i.e. nv_ + J:ld_) (29)

where the vector z of length m contains the filtered signals,
the estmaated output vector of length m, and Lv the n x m

gain matrix associated with the error between z and _. Here,
theadditional term,Lv(z-_) provides thefreedom necessary
to design the state estimators for second-order models. The

phase differences between the measured signals y and the
shifted signals z are determined by the mxrn square matrices
P and Q. For simplicity in real time implementation, the
matrices P and Q may be chosen to be diagonal such that
signals are not coupled in the prefiltering processes. Indeed,
in this case, a scalar second-order equation is obtained for

each signal which can be easily implemented by an analog
computer. Subtracting Eq. (27) from Eq. (1) with the aid of

Fzls. (28) and (29) yields the error equation

M_+ [D+ LdH,,]_+ [K+ LdHd]e+ _ez = 0 (30)

and
_. + P_. + Qe= - 1t_ - Hde = o (31)

where e= = z - _ is the error between the filtered-signals
and the estimated filtered-signals. Equations (30) and (31)
can be rewritten in the following matrix form

[D+ LdHvI0 ..
+L -n, e,

Thelefteigen,*:m (k= 1,...,- + m)andthe
correspondingeigenvaluesAk for the systemof Eq. (32) are



related through the following equation

+ L -_ _ --o
(33)

where subscript k refers to the eigenvalue number. The
transpose of this equation is

[D+_L_ -_"{[o o :
+ [K +//_d L_" -//_

"--0°

This equation can be_decomposed into two parts which are

_k

(34)

{A_M+ak[D+HY_Zd_l+tK+ff_dZdrl}gk(35a)

and

L_t + [_i+ _tf + &l& = o. (35b)
Solving for _t from Eq. (35b) and substituting it into

F.,q.(35a) yields

[(_M+ _tD+/(2") (_t//_ + H_d)]

• {L_+ [,xl+ _tP r + Qr]-xzr}_t - rtct= 0.
(36)

This equation is nearly identical to Eq. (9) in the sense
that rt's in both equations are identical, and therefore
have the same null space. This simply means that the
computational procedure developed previously can also be
used in computing the gain matrices L_ and Ld. However,
the way to compute L_ and Ld in Eq. (36) is somewhat
different from that of Eq. (9).

If the closed-loop eigenvalues At (k = 1,... ,n + m)
and their complex conjugates arc assigned, the gain matrices
can be determined as follows. As shown in Eq. (12), choose
a particular set of vectors Ct (k = 1,... ,n+ m) satisfying
F-_I.(36) and partition vector Ct into two components, then
Eq. (36) implies

{£r +[_i+,_k Pr +Qrl-lLr_}_=_k ;

k= 1,...,n+m.
(37)

This equalion can be decomposed into real part and imagi-
nary parts to solve for the gain matrices Lu and Ld (Both
matrices are real), containing 2m x n unknown elements.
However, the computational procedure is not as sWalghtfor-
ward as the previous case, Eq. (13). Became P and Q are

design parameters for the prefilter equations, they may be
chosen to be diagonal for simplicity in real time implemen-
tation as well as computation of Lv and Ld in Eq. (37).

First-Order State Estimator Models

There are two reasons why first-order state estimators for
flexible structures are presented in this section. First, a com-
putational procedure which is different from conventional
ones is developed here. Second, a comparison between the
first-order and the second-order state estimators is given for
better understanding of the characteristics and merits of both
approaches.

Equation (1) can be rewritten in a first-order form,

(:)=
Correspondingly, the

+

stateestimation equation becomes

Note that the gain malrices Lv and Ld used here are
somewhat different from those shown in the above section

(Eq. (3)), even though they look similar. To determine the
matrices Lv and Ld, the state estimation error is defined by

d = [(z - e)r (:__ _)r]r. (40)

Observe that the estimation error defined in Eq. (5) for a
second-order model is different from the one defined above,

Eq. (40). There is no estimation error for velocity terms
involved in Eq. (5). instead, the estimated velocity errors
are incorporated in the state estimation equation, F.q. (3).
Subtracting Eq. (39) from Eq. (38) yields the error equation

The left eigenvectors {¢{v ¢r_'_a}(k = 1,...,2n) and
the corresponding eigenvalues AI_for the system given by
Exl. (41) are written as

t_

where subscript k refers to the eigenvalue number. The
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transposeofthisequationis

(43)

+ L kdj=°"

Thisequationcanbe decomposedintotwo partswhicharc

and

P-zlS.(47)and(48).Therefore.atotalof2n × n × n equations
arecomputationallysavedforn assignedeigenvalues.Now

let• = [_d,--.,_,,_]._ = [_,"',_] and _ =

_l,...,_n]"Equation(47)gives

ff,L+Ld ,= 4,, <49a)

or inmatrixform

PremultiplyingEq. (44b)by At and addingtheresulting_

equationtoEq.(44a)yields

+ + + =o
(4s)

or in a compact matrix form

 kD+ +
[ _kd ] (46)

.L(LT¢,÷ LT@kd) j -r,¢, =0.

ThisequationisnearlyidenticaltoEq.(9)inthesensethat

rt'sinbothequationsareidentical,and thereforehavethe

same nullspace.Thisisa significantresultwhichsimply

indicatesthat thecomputationalproceduredevelopedabove
forthesecond-o_dermodel can alsobe usedincomputing

thegainmatricesI.,vand Ld forthefirst-ordermodel.The

matrices Lv and Ld can be determinedwhen all thenull
spaces of the matrix rk correspooding to the eigenvalues At
are computed. However, the way to compute/_ and Ld in
Eq. (46) is somewhat different from those in Eq. (9).

If the closed-loop eigenvalues At (k - 1,... ,n) are as-

signedincludingtheircomplexconjugates,thegainmatrices

Lv andLd canbedeterminedasfollows.FollowingEq.(12),

choosea particularsetofvectors_bt(k= 1,..•,n)satisfy-

ingEq• (46)andpartitionthevector_>kintotwocomponents,

= [ga _]" Equation(46)implies

LT4?kv % LT4?td = _k ; _ -- 1,...,- (47)

where _btvcanbe solvedfromEq.(44)

_k_ = --(K_kd+ ]_d_)k)IAt_; k = l,...,It.(48)

BothEqs.(47)and (48)aren X n equationscomparedtoa
2n x 2n equationssolvedfora typical first-ordermodelsuch

as Eq. (43). In otherwords, there are 2nxn less equations to
solve for the matrices/._ and Ld for each eigenvalue using

(50)

where rite subscript r and i respectively refer to the real

and imaginary parts of the associated quantities. The gain
matrices L_ and La can then be solved by using

(51)

Again, a man-ix inversion is required in the computation of
the g_n matrices Lv and Ld.

Numerical Example

The second-orderstateestimatorisusedtocontrolthe
vibrationalmotionof theflexibletrussstructureshown in

Fig. 1. The structure genetically represents a test article for
the NASA's Conlrols-Slructures-interaction program. It is

composed of a L-shaped bus, a reflector, a laser feed, and
two suspension cables used to simulate on-orbit conditions.
The original finite element model is composed of 350 grid
points with six degrees of freedom per grid point, resulting
in a 2100 degree-of-freedom. However, for preliminary
control designs a reduced order model comprised of the
first nine modes of the structure, covering a bandwidth of

O-SHz, is used. These modes include four pendulum modes
(modes due to suspension effects) and five flexural as well
as torsional modes. The actuation of the control forces is

provided through six proportional gas thrusters located at
various points on the body as illustrated in Figure 1. Six
inertial measurement units and six accelerometers provide
twelve measurements of linear velocity and accelerations

at six locations along the body (almost collocated with the
actuators) as indicated in Fig. 2.

The open-loopeigenvaluesand thedesired closed-loop
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eigenvalues are summarized in Table 1.

Table 1.

Open-Loop
Eigenvalues

0.0000 + 0.7746i
0.0000 + 0.8019i
0.0000 + 0.8043i
0.0000 + 3.9237i
0.0000 + 13.4800i
0.0000 + 15.2194i
0.0000 + 18.9833i
0.0000 + 19.4861i
0.0000 + 23.4345i

Closed-Loop
Eigenvalues

-0.0501 + 1.0000i
-0.0601 + 1.2000i
-0.0751 + 1.5000i
-0.1964 + 3.9237i
-0.6748 + 13.4800i
-0.7619 + 15.2194i
-0.9504 + 18.9833i
-0.9755 + 19.4861i
-1.1732 + 23.4345i

The closed-loop eigenvalues are chosen such that the first
four pendulum modes arc provided with 30% damping and
the remaining modes with 5% damping. The closed-loop
damped frequencies (imaginary part of the eigenvalues) arc
larger than the open-loop values for the first three modes, but
the same for the remaimn"g modes. The closed-loop eigen-
values are assigned via a constant full state feedback, using
the robust second-order assignment technique described in
Ref. 12 in conjunction with the first design method described
in the section of State Estimators with Measurement Signals
and their Derivatives. Here, however, the estimated state is
used instead of the actual state in the feedback loop.

Using the closest unitary matrix to the open-loop eigen-
vector malrix as the choice for matrix Ho, the eigensystem
assignment technique results in a well-conditioned closed-

loop system with a modal matrix condition number, c(_), of
26.76 which compares quite well with open-loop condition
number of 23.43. The forbenius norm of the gain matrix
is quite small at 6.89. These results indicate that proposed
eigensystem assignment technique is quite effective and can
lead to viable closed-loop designs.

The estimator gains are also obtained using the eigew
system assignment technique described in the first design

method. The closed-loop eigenvalues of the estimator sys-
tern are chosen equal to the closed-loop eigenvaiues of the
actual system given in Table 1 except that the real part of all
the eigenvalues are chosen at -0.5 to achieve an acceptable

performance for the overall system. The resulting state esti-
mator has a good conditioning of 67.06 and a low norm of the
gain matrix at 1.10 which further illustrates the effectiveness
of the proposed design procedure to obtain well-conditioned
closed-loop systems with small control effort.

To verify the feasibility of the designed state estimator,
a numerical simulation was carried out wherein the dynamic
behavior of the closed-loop system for an initial disturbance
is investigated. The time history for the first pendulum mode
and its associated estimation error are presented in Figs. 2(a)
and 2(I)), respectively, for an intial velocity of 1.0 in all
coordinates. Similarly, the time histories for the first flexible

2

mode, and its corresponding estimation err_ are given in
Figs. 2(c) and 2(d). The lime histories of the conu'ol forces
are respectively illustrated in Figs. 3(a)-3(0. The results
indicate that the initial disturbance is practically damped out
in 10 - 12 seconds.

Concluding Remarks

Three design methods for a state estimator were presented
in this paper. The first two methods were used to build a
second-order state estimator model. The third design method
was the traditional state estimator design using a first-order
model, but the gain matrix was computed through a second-
order model. Careful examination of the the third method

reveals that the first-order state estimation equation does in-
clude a filter equation. Indeed, when a second-order model
is conveaed intoa first-order model, an additional first-order

equation is generated which is then implicitely used to build
a filter equation. Consequently, it can be concluded that
as long as a prefilter design is added in the second-order
dynamic model, full freedom to design a state estimator is
obtained. From the computational point of view, the second-

order models are more atlractive for use in designing the state
estimators,becausethedimensionofthemathematicalmod-

elsremainunchanged,ratherthanan increaseby a factorof
two forthefirst-ordermodels.Furthermore,thefundamental

structureofthemathematicalmodelssuchasthesymmeO'y
and sparsityofthemass,dampingand stiffnessmatricesis

maintained.The disadvantagesofthestateestimationusing

second-ordermodelsincludetherequirementsof additional

sensorsorprefiltersforrealtimeimplementation.

References

I Hyland,D. C., "Comparisonof VariousController-

ReductionMethods: Suboptimai VersusOptimal Pro-
jection," Proceedingsof theAIAA DynamicsSpecialists

Conference, Palm Springs, CA., 1984, pp. 381-389.
Hyland, D. C. and Bemstein, D. S., "The Optimal Pro-

jecfion Equations for Model Reduction and the Rela-
tionships Among the Methods of Wilson, Skelton and
Moore," IEEE Transaction on Automatic Controls,
AC-30, 1985, pp. 1201-1211.

s Bemstein, D. S., Davis, L. D. and Hyland, D. C., '_'he
Optimal Projection Equations for Reduced-Order, Dis-
crete Time Modeling, Estimation and Control," Journal
of Guidance, Controls and Dgnamics, Vol. 9, 1986,

pp. 283-293.
4 Gawronski, W. and Juang, J.-N., "Model Reduction for

Flexible Slructures," Control and Dj/namic S_/stems,

Advances in Theory and Applications, Vol. 36, Edited
by C. T. I.,e_ndes, Academic Press, Inc., July 1990.

6 Yousuff, A. and Skelton, R. E., "ConlToller Reduction

by Component Cost Analysis," IEEE Transaction on
Automatic Controls, AC-24, 1984, pp. 520-530.

8



6 Hashemipour, H. R. and Lamb, A. J., "Kalrnan Filtering
for Second-Order Models," Journal of Guidance, Con-

frols and Dynamics, VoL ll,No. 2, 1988, pp. 181-185.

70shman, Y., Inman, D. J. and Laub, A. J., "Square
Root State Estimation for Second-Order Large Space

StrucRtre Models," Journal of Guidance, Control and

Dynamics, Vol. 12, No. 5, Sept.-Oct., 1989, pp. 698-
708.

s Creamer, N. G. and Junkins, J. L., "A Pole Placement

Technique for VibrationSuppressionof FlexibleStruc-

tures,"Journal of Guidance, Control and Dynamics,

to appear.
Juang, J.-N. and Phan, M., "Robust Controller Designs
for Second-Order Dynamic Systems: A Virtual Passive

Approach," NASA TM-102666, Langley Research Cen-

ter, May 1990.

lo Belvin, W. K. and Park, K. C.,"On the State Estimation
of Structures with Second-Order Observers," Proceed-

ings of the _Oth Structures, Structural Dynamics and
Materials Conference, AIAA paper No. 89-1241, April

3-5, 1989.

11 Belvin, W. K., "Simulation and Interdisciplinary Design

Methodology for Control-Structure Interaction Systems,"
Ph.D. Dissertation, University of Colorado at Boulder,

July 1989.

12 Juang, J.-N. and Maghami, P. G., "Robust Eigensys-

tern Assignment for Second-Order Dynamics Systems,

Proceedings of AIAA Dynamic Specialist Conference,

Long Beach, CA., April 5-6, 1990.

lS Golub, G.H. and Van Loan, C.F., Matriz Computations,

John Hopkins University Press, Baltimore, MD, 1983.

V,A,T

V,A,T 5_ 6

V: Linear Velocity

A: Accelerometer

T: Thruster (Actuator)

Fig. I NASA Controls-Structures Interaction Test Article



'[-__! I T i i !--i I ] -"r t , ! _ , r--r::

I itiI:A:t,, j, ! t "':
•' .... 1....................j.........;.............................i................./ ., ...........................................1 t..................i I.........

........ ] i I I.............. !............................. I................... I J I I.e • t I Ii i 1 ! ., ........................ i............. F................... i................i............................_......................................_ I . , .I t ! t
i "' i ! t _ 1 I I _- i J t , ! ....................4........._.........i..........,.........4.........I........."8.

-_ o ot_ ,; i i: i I ! i

-.2 .... : i 1 i ! :

-a _ i I ! 1 i ! ; i
-.4 I _ " I ;
_.. _.,LJ____J_,J_ ±_L ± 2

0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 1B
"r;rno T;mo

a) Actual Amplitude of the first mode b) Estimation error of the first mode

amplitude

,.illl ti!iiiii t i.09 ..........t.............................._..........'..................

1
.o6 iiT...........................................................

I i !...................................
-..-'°' 11*..........................................................i I I ] ]

..........!.........].........I...................I.........,.........
I 1 l I-.09 ......................... , .........1.....................................

-.,2 ...l...1......... i......
0 2 4 8 8 10 12 14 16 18

Time

.00

.08

.04

i .02

0

• - ,02

--.04

-.08

• • -.08
0

i , I i i I

...........................t.........-_..................._..........j.........1..........
I I ] I 1

li_l. t I J j I t I
HHli.......,.........]..........I.........,.........I.........!.........i.........
IllUlltlVVltVvv'_"7 .... | i i i

•11!i|-I-'----t-.......]........_.........I..........I........."_.........,l".........

IT ] ! _ ! I ,!".....................*.........".........1.........._..........I..........!.........

'.T;Ti;7;iiT;iTi;iiLTZi;ii
2 4 6 8 10 12 14 16 18

T;rne

c) Actual Amplitude of the fifth mode d) Estimation error of the fifth mode

amplitude

Figure 2 Time histories of modal amplitudes and estimation errors

10



.4- ! * i

I ......_.................i..........!.........i........._........................I..........i.........I..................i........
v_.........!.........._........i........._.........!......

__......._ i i _ _ _ _....................................-" ...........i i i friiiiii!iiiiiiiilCiill............................
_.,. / .....l..........1.........I........i.........I..........i......... -_ III"T .........1.........].......i]iiiiiiiii[i......i..........!.........

__[,,.l...I...t... I..,,... I....... ,...
o , , . %;° ,, ,, ,. ,. o , , . %;o

a) Thruster #1 b) Thruster #2

..i...........t,,............,, tI .........................................................................." t_iII .................................i.................1.1 _T, _li I....................I...................i....................i...................2......_ , I 1 _I........!.......I.........I..........!.........i.........i..........i..........i.........In ! i I | ] i........
2 ..................... 1..................._.........T.........[..........!

.....•°*-i-......_.........i........._, ,.............................,.................................... -i i.....
-- I _ . _ i _,_..l_.........'_........_..........!........._.........._.........i..........!.........
-.,...................., I _ i , _|!_._...l...l...i...i...l...!...l.......I...i...,...,...l.......,...

e c) Thruster #3 d) Thruster #4

I, iII i i I i i I I 'I Ill I } I i i ! I

I,III i'*i:i1.........................''''''...................................................................i.................i................. ._ ....................... ]........_........._........._.........

" '-','i_::t;;;_.............._-.,I_,1'i_i t I I !...................................................
_I Ii;:;!I ,H,........_........._.........!........._.........i........._.........._..........l..!li..I...,...I..,...'.......''"

'lime

e) Thruster #5 f) Thruster #6

.4

.2

_°

Figure 3 Time histories of control forces

11



Report Documentation Page
61_e Ao_,,_,,slr alo "-,

1 Report No 2 Government Acce_ion No

NASA TM-I02696

4 Title and Subtitle

Robust Eigensystem Assignment for Second-Order

Estimators

7 Author(s)

Jer-Nan Juang and Peiman G. Maghami

9 Pedorming Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12 Sponsoring Agency Name and Addre_

National Aeronautics and Space Administration

Washington, DC 20546-0001

3 Recipient's Catalog No

5. Report Date

J.lv 1990
6 Perfor_ming Organization Code

8. Performing Organization Report No

10 Work Unit No

590-14-6 i-01

11. Contract or Grant No

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring ,_gency Code

15 Supplementary Notes

16. Abstract

A novel design of a state estimator is presented using the second-order dynamic

equations. The eigenvalues and eigenvectors or the state estimator are assigned,
via the second-order eigenvalue problem of the structural system. These design

methods for the state estimator are given in this paper. The first design

method uses collocated sensors to measure the desired signals and their

derivatives. The second design methods used prefilters to shift signal phases

to obtain similar effects as the collocated sensors does for signal derivatives.

The above two methods build a second-order state estimator model. For comparison,

the third design method is the conventional one which converts a typical second-

order dynamic model to a flrst-order model, and then builds a state estimator

based on the flrst-order model. It is shown that all the three designs for state

estimation are similar. A numerical example representing a large space structure

is given for illustration of the design methods presented in this paper.

17Key Wor_ (Sugared byAuthor(s))

State Estimators

Observers

Closed-Loop Eigenvalue Assignment

Large Space Structure

19. Security Classif (of this report)

Uncl assJ fi ed

18. _mb;bution S_i,,,_nt

Unclassified--Unlimlted

Subject Category 39

20. Security C;--u;;. (of this page)

Unclassified

22. Price

AO 3

NASA FORM 1626 OCT 86






