17 research outputs found

    Haldane-Gapped Spin Chains as Luttinger Liquids: Correlation Functions at Finite Field

    Full text link
    We study the behavior of Heisenberg, antiferromagnetic, integer-spin chains in the presence of a magnetic field exceeding the attendant spin gap. For temperatures much smaller than the gap, the spin chains exhibit Luttinger liquid behavior. We compute exactly both the corresponding Luttinger parameter and the Fermi velocity as a function of magnetic field. This enables the computation of a number of correlators from which we derive the spin conductance, the expected form of the dynamic structure factor relevant to inelastic neutron scattering experiments, and NMR relaxation rates. We also comment upon the robustness of the magnetically induced gapless phase both to finite temperature and finite couplings between neighbouring chains.Comment: 32 pages, 8 figures; published version includes additions discussing the robustness of the magnetically induced gapless phase to ordering between chains as well as the relationship between the spin-1 chains and spin-1/2 ladders in the presence of a magnetic fiel

    Dynamic protein methylation in chromatin biology

    Get PDF
    Post-translational modification of chromatin is emerging as an increasingly important regulator of chromosomal processes. In particular, histone lysine and arginine methylation play important roles in regulating transcription, maintaining genomic integrity, and contributing to epigenetic memory. Recently, the use of new approaches to analyse histone methylation, the generation of genetic model systems, and the ability to interrogate genome wide histone modification profiles has aided in defining how histone methylation contributes to these processes. Here we focus on the recent advances in our understanding of the histone methylation system and examine how dynamic histone methylation contributes to normal cellular function in mammals
    corecore