60 research outputs found

    Design of Ultra High Performance Fiber Reinforced Concrete Shells

    Get PDF

    Real-time interferometric refractive index change measurement for the direct detection of enzymatic reactions and the determination of enzyme kinetics

    Get PDF
    Back scatter interferometry (BSI) is a sensitive method for detecting changes in the bulk refractive index of a solution in a microfluidic system. Here we demonstrate that BSI can be used to directly detect enzymatic reactions and, for the first time, derive kinetic parameters. While many methods in biomedical assays rely on detectable biproducts to produce a signal, direct detection is possible if the substrate or the product exert distinct differences in their specific refractive index so that the total refractive index changes during the enzymatic reaction. In this study, both the conversion of glucose to glucose-6-phosphate, catalyzed by hexokinase, and the conversion of adenosine-triphosphate to adenosine di-phosphate and mono-phosphate, catalyzed by apyrase, were monitored by BSI. When adding hexokinase to glucose solutions containing adenosine-triphosphate, the conversion can be directly followed by BSI, which shows the increasing refractive index and a final plateau corresponding to the particular concentration. From the initial reaction velocities, KM was found to be 0.33 mM using Michaelis⁻Menten kinetics. The experiments with apyrase indicate that the refractive index also depends on the presence of various ions that must be taken into account when using this technique. This study clearly demonstrates that measuring changes in the refractive index can be used for the direct determination of substrate concentrations and enzyme kinetics

    Treatment of stage I–III periodontitis—The EFP S3 level clinical practice guideline

    Get PDF
    BACKGROUND The recently introduced 2017 World Workshop on the classification of periodontitis, incorporating stages and grades of disease, aims to link disease classification with approaches to prevention and treatment, as it describes not only disease severity and extent but also the degree of complexity and an individual's risk. There is, therefore, a need for evidence-based clinical guidelines providing recommendations to treat periodontitis. AIM The objective of the current project was to develop a S3 Level Clinical Practice Guideline (CPG) for the treatment of Stage I-III periodontitis. MATERIAL AND METHODS This S3 CPG was developed under the auspices of the European Federation of Periodontology (EFP), following the methodological guidance of the Association of Scientific Medical Societies in Germany and the Grading of Recommendations Assessment, Development and Evaluation (GRADE). The rigorous and transparent process included synthesis of relevant research in 15 specifically commissioned systematic reviews, evaluation of the quality and strength of evidence, the formulation of specific recommendations and consensus, on those recommendations, by leading experts and a broad base of stakeholders. RESULTS The S3 CPG approaches the treatment of periodontitis (stages I, II and III) using a pre-established stepwise approach to therapy that, depending on the disease stage, should be incremental, each including different interventions. Consensus was achieved on recommendations covering different interventions, aimed at (a) behavioural changes, supragingival biofilm, gingival inflammation and risk factor control; (b) supra- and sub-gingival instrumentation, with and without adjunctive therapies; (c) different types of periodontal surgical interventions; and (d) the necessary supportive periodontal care to extend benefits over time. CONCLUSION This S3 guideline informs clinical practice, health systems, policymakers and, indirectly, the public on the available and most effective modalities to treat periodontitis and to maintain a healthy dentition for a lifetime, according to the available evidence at the time of publication

    Prevention and treatment of peri-implant diseases-The EFP S3 level clinical practice guideline.

    Get PDF
    BACKGROUND The recently published Clinical Practice Guidelines (CPGs) for the treatment of stages I-IV periodontitis provided evidence-based recommendations for treating periodontitis patients, defined according to the 2018 classification. Peri-implant diseases were also re-defined in the 2018 classification. It is well established that both peri-implant mucositis and peri-implantitis are highly prevalent. In addition, peri-implantitis is particularly challenging to manage and is accompanied by significant morbidity. AIM To develop an S3 level CPG for the prevention and treatment of peri-implant diseases, focusing on the implementation of interdisciplinary approaches required to prevent the development of peri-implant diseases or their recurrence, and to treat/rehabilitate patients with dental implants following the development of peri-implant diseases. MATERIALS AND METHODS This S3 level CPG was developed by the European Federation of Periodontology, following methodological guidance from the Association of Scientific Medical Societies in Germany and the Grading of Recommendations Assessment, Development and Evaluation process. A rigorous and transparent process included synthesis of relevant research in 13 specifically commissioned systematic reviews, evaluation of the quality and strength of evidence, formulation of specific recommendations, and a structured consensus process involving leading experts and a broad base of stakeholders. RESULTS The S3 level CPG for the prevention and treatment of peri-implant diseases culminated in the recommendation for implementation of various different interventions before, during and after implant placement/loading. Prevention of peri-implant diseases should commence when dental implants are planned, surgically placed and prosthetically loaded. Once the implants are loaded and in function, a supportive peri-implant care programme should be structured, including periodical assessment of peri-implant tissue health. If peri-implant mucositis or peri-implantitis are detected, appropriate treatments for their management must be rendered. CONCLUSION The present S3 level CPG informs clinical practice, health systems, policymakers and, indirectly, the public on the available and most effective modalities to maintain healthy peri-implant tissues, and to manage peri-implant diseases, according to the available evidence at the time of publication

    CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection

    Get PDF
    Epidemiological studies have indicated a relationship between coronary heart disease (CHD) and periodontitis. Recently, CDKN2BAS was reported as a shared genetic risk factor of CHD and aggressive periodontitis (AgP), but the causative variant has remained unknown. To identify and validate risk variants in different European populations, we first explored 150 kb of the genetic region of CDKN2BAS including the adjacent genes CDKN2A and CDKN2B, covering 51 tagging single nucleotide polymorphisms (tagSNPs) in AgP and chronic periodontitis (CP) in individuals of Dutch origin (n=313). In a second step, we tested the significant SNP associations in an independent AgP and CP population of German origin (n=1264). For the tagSNPs rs1360590, rs3217992, and rs518394, we could validate the associations with AgP before and after adjustment for the covariates smoking, gender and diabetes, with SNP rs3217992 being the most significant (OR 1.48, 95% CI 1.19 to 1.85; p=0.0004). We further showed in vivo gene expression of CDKN2BAS, CDKN2A, CDKN2B, and CDK4 in healthy and inflamed gingival epithelium (GE) and connective tissue (CT), and detected a significantly higher expression of CDKN2BAS in healthy CT compared to GE (p=0.004). After 24 h of stimulation with Porphyromonas gingivalis in Streptococcus gordonii pre-treated gingival fibroblast (HGF) and cultured gingival epithelial cells (GECs), we observed a 25-fold and fourfold increase of CDKN2BAS gene expression in HGFs (p=0.003) and GECs (p=0.004), respectively. Considering the global importance of CDKN2BAS in the disease risk of CHD, this observation supports the theory of inflammatory components in the disease physiology of CHD

    Treatment of Stage I-III Periodontitis -The EFP S3 Level Clinical Practice Guideline

    Get PDF
    The recently introduced 2017 World Workshop classification of periodontitis, incorporating stages and grades of disease, aims to link disease classification with approaches to prevention and treatment, as it not only describes disease severity and extent, but also the degree of complexity and an individual`s risk. There is, therefore, a need for evidence-based clinical guidelines providing recommendations to treat periodontitis

    Sex‐specific genetic factors affect the risk of early‐onset periodontitis in Europeans

    Get PDF
    Aims: Various studies have reported that young European women are more likely to develop early-onset periodontitis compared to men. A potential explanation for the observed variations in sex and age of disease onset is the natural genetic variation within the autosomal genomes. We hypothesized that genotype-by-sex (G × S) interactions contribute to the increased prevalence and severity. Materials and methods: Using the case-only design, we tested for differences in genetic effects between men and women in 896 North-West European early-onset cases, using imputed genotypes from the OmniExpress genotyping array. Population-representative 6823 controls were used to verify that the interacting variables G and S were uncorrelated in the general population. Results: In total, 20 loci indicated G × S associations (P < 0.0005), 3 of which were previously suggested as risk genes for periodontitis (ABLIM2, CDH13, and NELL1). We also found independent G × S interactions of the related gene paralogs MACROD1/FLRT1 (chr11) and MACROD2/FLRT3 (chr20). G × S-associated SNPs at CPEB4, CDH13, MACROD1, and MECOM were genome-wide-associated with heel bone mineral density (CPEB4, MECOM), waist-to-hip ratio (CPEB4, MACROD1), and blood pressure (CPEB4, CDH13). Conclusions: Our results indicate that natural genetic variation affects the different heritability of periodontitis among sexes and suggest genes that contribute to inter-sex phenotypic variation in early-onset periodontitis

    A new classification scheme for periodontal and peri-implant diseases and conditions - Introduction and key changes from the 1999 classification

    Get PDF
    A classification scheme for periodontal and peri‐implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri‐implant Diseases and Conditions. The workshop was co‐sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015.An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri‐implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus.This introductory paper presents an overview for the new classification of periodontal and peri‐implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable.The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri‐implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri‐implant diseases and conditions and briefly highlights changes made to the 1999 classification. It cannot present the wealth of information included in the reviews, case definition papers, and consensus reports that has guided the development of the new classification, and reference to the consensus and case definition papers is necessary to provide a thorough understanding of its use for either case management or scientific investigation. Therefore, it is strongly recommended that the reader use this overview as an introduction to these subjects. Accessing this publication online will allow the reader to use the links in this overview and the tables to view the source papers (Table 1).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144587/1/jper10117_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144587/2/jper10117.pd

    A new classification scheme for periodontal and peri‐implant diseases and conditions – Introduction and key changes from the 1999 classification

    Full text link
    A classification scheme for periodontal and peri‐implant diseases and conditions is necessary for clinicians to properly diagnose and treat patients as well as for scientists to investigate etiology, pathogenesis, natural history, and treatment of the diseases and conditions. This paper summarizes the proceedings of the World Workshop on the Classification of Periodontal and Peri‐implant Diseases and Conditions. The workshop was co‐sponsored by the American Academy of Periodontology (AAP) and the European Federation of Periodontology (EFP) and included expert participants from all over the world. Planning for the conference, which was held in Chicago on November 9 to 11, 2017, began in early 2015.An organizing committee from the AAP and EFP commissioned 19 review papers and four consensus reports covering relevant areas in periodontology and implant dentistry. The authors were charged with updating the 1999 classification of periodontal diseases and conditions and developing a similar scheme for peri‐implant diseases and conditions. Reviewers and workgroups were also asked to establish pertinent case definitions and to provide diagnostic criteria to aid clinicians in the use of the new classification. All findings and recommendations of the workshop were agreed to by consensus.This introductory paper presents an overview for the new classification of periodontal and peri‐implant diseases and conditions, along with a condensed scheme for each of four workgroup sections, but readers are directed to the pertinent consensus reports and review papers for a thorough discussion of the rationale, criteria, and interpretation of the proposed classification. Changes to the 1999 classification are highlighted and discussed. Although the intent of the workshop was to base classification on the strongest available scientific evidence, lower level evidence and expert opinion were inevitably used whenever sufficient research data were unavailable.The scope of this workshop was to align and update the classification scheme to the current understanding of periodontal and peri‐implant diseases and conditions. This introductory overview presents the schematic tables for the new classification of periodontal and peri‐implant diseases and conditions and briefly highlights changes made to the 1999 classification. It cannot present the wealth of information included in the reviews, case definition papers, and consensus reports that has guided the development of the new classification, and reference to the consensus and case definition papers is necessary to provide a thorough understanding of its use for either case management or scientific investigation. Therefore, it is strongly recommended that the reader use this overview as an introduction to these subjects. Accessing this publication online will allow the reader to use the links in this overview and the tables to view the source papers (Table ).Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/144667/1/jcpe12935.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/144667/2/jcpe12935_am.pd

    CDKN2BAS is associated with periodontitis in different European populations and is activated by bacterial infection

    Get PDF
    Epidemiological studies have indicated a relationship between coronary heart disease (CHD) and periodontitis. Recently, CDKN2BAS was reported as a shared genetic risk factor of CHD and aggressive periodontitis (AgP), but the causative variant has remained unknown. To identify and validate risk variants in different European populations, we first explored 150 kb of the genetic region of CDKN2BAS including the adjacent genes CDKN2A and CDKN2B, covering 51 tagging single nucleotide polymorphisms (tagSNPs) in AgP and chronic periodontitis (CP) in individuals of Dutch origin (n=313). In a second step, we tested the significant SNP associations in an independent AgP and CP population of German origin (n=1264). For the tagSNPs rs1360590, rs3217992, and rs518394, we could validate the associations with AgP before and after adjustment for the covariates smoking, gender and diabetes, with SNP rs3217992 being the most significant (OR 1.48, 95% CI 1.19 to 1.85; p=0.0004). We further showed in vivo gene expression of CDKN2BAS, CDKN2A, CDKN2B, and CDK4 in healthy and inflamed gingival epithelium (GE) and connective tissue (CT), and detected a significantly higher expression of CDKN2BAS in healthy CT compared to GE (p=0.004). After 24 h of stimulation with Porphyromonas gingivalis in Streptococcus gordonii pre-treated gingival fibroblast (HGF) and cultured gingival epithelial cells (GECs), we observed a 25-fold and fourfold increase of CDKN2BAS gene expression in HGFs (p=0.003) and GECs (p=0.004), respectively. Considering the global importance of CDKN2BAS in the disease risk of CHD, this observation supports the theory of inflammatory components in the disease physiology of CHD
    • …
    corecore