2,633 research outputs found

    Risk stratification of symptomatic brain metastases by clinical and FDG PET parameters for selective use of prophylactic cranial irradiation in patients with extensive disease of small cell lung cancer

    Get PDF
    Purpose: To identify risk factors for developing symptomatic brain metastases and evaluate the impact of prophylactic cranial irradiation (PCI) on brain metastasis-free survival (BMFS) and overall survival (OS) in extensive disease small cell lung cancer (ED-SCLC). Materials and methods: Among 190 patients diagnosed with ED-SCLC who underwent FDG PET/CT and brain Magnetic Resonance Imaging (MRI) prior to treatment, 53 (27.9%) received PCI while 137 (72.1%) did not. Prognostic index predicting a high risk of symptomatic brain metastases was calculated for the group without receiving PCI (observation group, n = 137) with Cox regression model. Results: Median follow-up time was 10.6 months. Multivariate Cox regression showed that the following three factors were associated with a high risk of symptomatic brain metastases: the presence of extrathoracic metastases (p = 0.004), hypermetabolism of bone marrow or spleen on FDG PET (p < 0.001), and high neutrophil-to-lymphocyte ratio (p = 0.018). PCI significantly improved BMFS in high-risk patients (1-year rate: 94.7% vs. 62.1%, p = 0.001), but not in low-risk patients (1-year rate: 100.0% vs. 87.7%, p = 0.943). However, PCI did not improve OS in patients at high risk for symptomatic brain metastases (1-year rate: 65.2% vs. 50.0%, p = 0.123). Conclusion: Three prognostic factors (the presence of extrathoracic metastases, hypermetabolism of bone marrow or spleen on FDG PET, and high neutrophil-to-lymphocyte ratio) were associated with a high risk of symptomatic brain metastases in ED-SCLC. PCI was beneficial for patients at a high risk of symptomatic brain metastases in terms of BMFS, but not OS. Thus, selective use of PCI in ED-SCLC according to the risk stratification is recommended. (C) 2020 Elsevier B.V. All rights reserved.

    Overcoming the therapeutic limitations of EZH2 inhibitors in Burkitt’s lymphoma: a comprehensive study on the combined effects of MS1943 and Ibrutinib

    Get PDF
    Enhancer of zeste homolog 2 (EZH2) and Bruton’s tyrosine kinase (BTK) are both key factors involved in the development and progression of hematological malignancies. Clinical studies have demonstrated the potential of various EZH2 inhibitors, which target the methyltransferase activity of EZH2, for the treatment of lymphomas. However, despite their ability to effectively reduce the H3K27me3 levels, these inhibitors have shown limited efficacy in blocking the proliferation of lymphoma cells. To overcome this challenge, we employed a hydrophobic tagging approach utilizing MS1943, a selective EZH2 degrader. In this study, we investigated the inhibitory effects of two drugs, the FDA-approved EZH2 inhibitor Tazemetostat, currently undergoing clinical trials, and the novel drug MS1943, on Burkitt’s lymphoma. Furthermore, we assessed the potential synergistic effect of combining these drugs with the BTK inhibitor Ibrutinib. In this study, we evaluated the effects of combination therapy with MS1943 and Ibrutinib on the proliferation of three Burkitt’s lymphoma cell lines, namely RPMI1788, Ramos, and Daudi cells. Our results demonstrated that the combination of MS1943 and Ibrutinib significantly suppressed cell proliferation to a greater extent compared to the combination of Tazemetostat and Ibrutinib. Additionally, we investigated the underlying mechanisms of action and found that the combination therapy of MS1943 and Ibrutinib led to the upregulation of miR29B-mediated p53-upregulated modulator of apoptosis PUMA, BAX, cleaved PARP, and cleaved caspase-3 in Burkitt’s lymphoma cells. These findings highlight the potential of this innovative therapeutic strategy as an alternative to traditional EZH2 inhibitors, offering promising prospects for improving treatment outcomes in Burkitt’s lymphoma

    The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice

    Get PDF
    The nucleotide sequence was determined for the genome of Xanthomonas oryzae pathovar oryzae (Xoo) KACC10331, a bacterium that causes bacterial blight in rice (Oryza sativa L.). The genome is comprised of a single, 4 941 439 bp, circular chromosome that is G + C rich (63.7%). The genome includes 4637 open reading frames (ORFs) of which 3340 (72.0%) could be assigned putative function. Orthologs for 80% of the predicted Xoo genes were found in the previously reported X.axonopodis pv. citri (Xac) and X.campestris pv. campestris (Xcc) genomes, but 245 genes apparently specific to Xoo were identified. Xoo genes likely to be associated with pathogenesis include eight with similarity to Xanthomonas avirulence (avr) genes, a set of hypersensitive reaction and pathogenicity (hrp) genes, genes for exopolysaccharide production, and genes encoding extracellular plant cell wall-degrading enzymes. The presence of these genes provides insights into the interactions of this pathogen with its gramineous host

    A Successful Primary Percutaneous Coronary Intervention Twelve Days After a Cabrol Composite Graft Operation in Marfan Syndrome

    Get PDF
    The Cabrol procedure is one of several techniques used for re-implantation of a coronary artery. After replacement of the ascending aorta and aortic valve using a composite graft, second Dacron tube grafts are used for anastomosis between the ascending aortic graft and the coronary arteries. Ostial stenosis is one of the complications associated with the Cabrol operation. However, there have been no reported cases of acute thrombosis of a Cabrol graft. Here we report a case with acute ST elevation myocardial infarction due to thrombotic total occlusion of a right Cabrol graft-to-right coronary artery (RCA) twelve days after surgery in a patient with Marfan syndrome. He was successfully treated with primary percutaneous coronary intervention (PCI)

    Electroless Gold Plating on Aluminum Patterned Chips for CMOS-based Sensor Applications

    Get PDF
    We presented an approach for the activation of aluminum Al alloy using palladium Pd and the subsequent gold Au electroless plating ELP for complementary metal oxide semiconductor CMOS -based sensor applications. In this study, CMOS process compatible Al patterned chips were used as substrates for easy incorporation with existing CMOS circuits. To improve the contact resistance that arose from the Schottky barrier between the metal electrodes and the single-walled carbon nanotubes SWCNTs , electroless deposition of gold that has a higher work function than Al was adopted because the SWCNTs has p-type semiconductor properties. Each step of the Au ELP procedure was studied under various bath temperatures, immersion times, and chemical concentrations. Fine Pd particles were homogeneously distributed on the Al surface by the Pd activation process at room temperature. Au ELP allowed selective deposition of the Au film on the activated Al surface only. The SWCNT networks formed on the Au plated chip by a dip-coating method showed improved contact resistance and resistance variation between the Au electrode and SWCNTs. We also tried SWCNT decoration with the Au particle using the upper Au ELP method, which was expected to be applied in various areas including field-effect transistors and sensor devices.This work was supported by the Nano Systems Institute-National Core Research Center NSI-NCRC program of NRF and the TDPAF, Ministry for Agriculture, Forestry and Fisheries, Republic of Korea
    corecore